岩石力学与工程学报
巖石力學與工程學報
암석역학여공정학보
CHINESE JOURNAL OF ROCK MECHANICS AND ENGINEERING
2014年
1期
24-34
,共11页
刘泉声%刘恺德%朱杰兵%卢兴利
劉泉聲%劉愷德%硃傑兵%盧興利
류천성%류개덕%주걸병%로흥리
岩石力学%高应力%原煤%三轴压缩%变形特征%强度特征%破坏机制%力学参数
巖石力學%高應力%原煤%三軸壓縮%變形特徵%彊度特徵%破壞機製%力學參數
암석역학%고응력%원매%삼축압축%변형특정%강도특정%파배궤제%역학삼수
rock mechanics%high stress%raw coal%triaxial compression%deformation characteristics%strength characteristics%failure mechanism%mechanical parameters
基于取自淮南矿区-780 m标高B 10煤层的原煤的试件,通过MTS815.04电液伺服试验系统进行高应力下原煤的常规三轴压缩试验,研究煤岩的变形、强度、参数及破坏特征。研究结果表明:(1)煤岩偏应力-轴向应变曲线主要由弹性、屈服、峰后脆性破坏阶段或应变软化段构成。其中,弹性段明显较长,且围压越大,曲线越陡,弹性模量越大;屈服段则总体较短。(2)煤岩在单轴或低围压条件下,峰后脆性破坏特征明显;随着围压升高,峰后开始呈现延性特征,且围压越高,延性特征越明显。当围压达到50 MPa时,峰后轴向应变几乎呈现塑性流动状态。(3)随着围压的增加,峰值轴向应变呈抛物线趋势增加,峰值侧向应变则呈线性增加趋势。(4)煤岩偏应力-体积应变曲线,在低围压条件下表现出扩容机制,且围压越低扩容特征越明显;在高围压下,从峰前越至峰后,则始终向右延展,呈现出不断收缩的状态;而峰值体应变随围压的增加呈抛物线形式增加,收缩特征明显。(5)煤岩强度随围压增加呈线性趋势增加,且强度参数c,φ值分别为12.72 MPa,24.12°。(6)煤样的破坏模式主要以剪切破坏为主,破断角大小为23°~35°,且随着围压的增加,以抛物线趋势增加。采用Mohr强度理论可以较好地解释这一变化。
基于取自淮南礦區-780 m標高B 10煤層的原煤的試件,通過MTS815.04電液伺服試驗繫統進行高應力下原煤的常規三軸壓縮試驗,研究煤巖的變形、彊度、參數及破壞特徵。研究結果錶明:(1)煤巖偏應力-軸嚮應變麯線主要由彈性、屈服、峰後脆性破壞階段或應變軟化段構成。其中,彈性段明顯較長,且圍壓越大,麯線越陡,彈性模量越大;屈服段則總體較短。(2)煤巖在單軸或低圍壓條件下,峰後脆性破壞特徵明顯;隨著圍壓升高,峰後開始呈現延性特徵,且圍壓越高,延性特徵越明顯。噹圍壓達到50 MPa時,峰後軸嚮應變幾乎呈現塑性流動狀態。(3)隨著圍壓的增加,峰值軸嚮應變呈拋物線趨勢增加,峰值側嚮應變則呈線性增加趨勢。(4)煤巖偏應力-體積應變麯線,在低圍壓條件下錶現齣擴容機製,且圍壓越低擴容特徵越明顯;在高圍壓下,從峰前越至峰後,則始終嚮右延展,呈現齣不斷收縮的狀態;而峰值體應變隨圍壓的增加呈拋物線形式增加,收縮特徵明顯。(5)煤巖彊度隨圍壓增加呈線性趨勢增加,且彊度參數c,φ值分彆為12.72 MPa,24.12°。(6)煤樣的破壞模式主要以剪切破壞為主,破斷角大小為23°~35°,且隨著圍壓的增加,以拋物線趨勢增加。採用Mohr彊度理論可以較好地解釋這一變化。
기우취자회남광구-780 m표고B 10매층적원매적시건,통과MTS815.04전액사복시험계통진행고응력하원매적상규삼축압축시험,연구매암적변형、강도、삼수급파배특정。연구결과표명:(1)매암편응력-축향응변곡선주요유탄성、굴복、봉후취성파배계단혹응변연화단구성。기중,탄성단명현교장,차위압월대,곡선월두,탄성모량월대;굴복단칙총체교단。(2)매암재단축혹저위압조건하,봉후취성파배특정명현;수착위압승고,봉후개시정현연성특정,차위압월고,연성특정월명현。당위압체도50 MPa시,봉후축향응변궤호정현소성류동상태。(3)수착위압적증가,봉치축향응변정포물선추세증가,봉치측향응변칙정선성증가추세。(4)매암편응력-체적응변곡선,재저위압조건하표현출확용궤제,차위압월저확용특정월명현;재고위압하,종봉전월지봉후,칙시종향우연전,정현출불단수축적상태;이봉치체응변수위압적증가정포물선형식증가,수축특정명현。(5)매암강도수위압증가정선성추세증가,차강도삼수c,φ치분별위12.72 MPa,24.12°。(6)매양적파배모식주요이전절파배위주,파단각대소위23°~35°,차수착위압적증가,이포물선추세증가。채용Mohr강도이론가이교호지해석저일변화。
According to the raw coal samples from B 10 seam of -780 m elevation in Huainan coal mine,the MTS815.04 electro-hydraulic servo testing system is used to carry out the conventional triaxial compression test under high stress. The deformation,strength,parameters and failure characteristics of coal are studied. The results show that:(1) The deviatoric stress-axial strain curves of coal are mainly composed of stages of elastic, yield,post-peak brittle failure or strain softening segment. Among them,the elastic period is longer obviously, and the greater the confining pressure is,the steeper the curve is,the greater the elastic modulus is. But,the yield period is shorter. (2) The post peak brittle failure feature of coal is apparent under uniaxial loading or low confining pressure. As the confining pressure increases,the ductile features start to appear after peak. The higher the confining pressure is,the more obvious characteristics of ductility are. When the confining pressure reaches to 50 MPa,the post-peak axial strain almost presents plastic flow pattern. (3) With the increase of confining pressure,the peak axial strain increases in parabolic trend,and the peak lateral strain increases in linear trend. (4) The deviatoric stress-volume strain curve of coal shows dilatancy mechanism under low confining pressure. The lower confining pressure is,the more obvious the dilatancy features shows. In the high confining pressure,the curve from pre-peak to post-peak is always right extend,and presents a continuous shrinkage state. And with the increase of confining pressure,the peak volume strain presents a parabolic increase form,which reflects the shrinkage characteristics significantly. (5) With the increase of confining pressure,the strength of coal increases in linear trend. The strength parameters c,?are 12.72 MPa,24.12°, respectively. (6) The failure modes of coal samples are mainly given priority to shear failure,and the rupture angle is in the range of 23°-35°. With the increase of confining pressure,the rupture angle increases in parabolic trend. The change can be better explained by Mohr strength theory.