农业工程学报
農業工程學報
농업공정학보
2014年
3期
128-134
,共7页
王金梁%秦其明%李军%林丛%徐若风%高中灵
王金樑%秦其明%李軍%林叢%徐若風%高中靈
왕금량%진기명%리군%림총%서약풍%고중령
遥感%光谱分析%模型%水体叶绿素a%高光谱%漓江%叶绿素a指数
遙感%光譜分析%模型%水體葉綠素a%高光譜%巑江%葉綠素a指數
요감%광보분석%모형%수체협록소a%고광보%리강%협록소a지수
spectrum analysis%remote sensing%models%water chlorophyll-a%hyperspectral data%Lijiang River%water chlorophyll-a index
水体叶绿素a含量是反映水体质量的重要指标之一,利用遥感技术监测其含量具有众多优势。该研究利用2012年7月在广西壮族自治区桂林市漓江流域实地采集的水体高光谱数据和实验室化验分析数据,借鉴陆表植被叶绿素a的遥感反演模型,发展了一种新的水体叶绿素a提取指数(water chlorophyll-a index,WCI)。通过与反射率敏感波段法、波段比值法和半分析方法对比分析发现,新提出的WCI指数使用650、685、696 nm波段,波段稳定,决定系数R2可达0.58,均方根误差最小为0.24,受水体悬浮物影响小,在天津海河区域的验证效果也表明了该模型可以有效地提取水体叶绿素 a 含量。该方法扩展了水体叶绿素 a 监测的建模思路,对水体叶绿素 a监测建模有一定的指导作用。
水體葉綠素a含量是反映水體質量的重要指標之一,利用遙感技術鑑測其含量具有衆多優勢。該研究利用2012年7月在廣西壯族自治區桂林市巑江流域實地採集的水體高光譜數據和實驗室化驗分析數據,藉鑒陸錶植被葉綠素a的遙感反縯模型,髮展瞭一種新的水體葉綠素a提取指數(water chlorophyll-a index,WCI)。通過與反射率敏感波段法、波段比值法和半分析方法對比分析髮現,新提齣的WCI指數使用650、685、696 nm波段,波段穩定,決定繫數R2可達0.58,均方根誤差最小為0.24,受水體懸浮物影響小,在天津海河區域的驗證效果也錶明瞭該模型可以有效地提取水體葉綠素 a 含量。該方法擴展瞭水體葉綠素 a 鑑測的建模思路,對水體葉綠素 a鑑測建模有一定的指導作用。
수체협록소a함량시반영수체질량적중요지표지일,이용요감기술감측기함량구유음다우세。해연구이용2012년7월재엄서장족자치구계림시리강류역실지채집적수체고광보수거화실험실화험분석수거,차감륙표식피협록소a적요감반연모형,발전료일충신적수체협록소a제취지수(water chlorophyll-a index,WCI)。통과여반사솔민감파단법、파단비치법화반분석방법대비분석발현,신제출적WCI지수사용650、685、696 nm파단,파단은정,결정계수R2가체0.58,균방근오차최소위0.24,수수체현부물영향소,재천진해하구역적험증효과야표명료해모형가이유효지제취수체협록소 a 함량。해방법확전료수체협록소 a 감측적건모사로,대수체협록소 a감측건모유일정적지도작용。
Water chlorophyll-a is one of the most important indices for water quality monitoring. Remote sensing technology has strong advantages in monitoring both water and vegetation chlorophyll-a concentrations. Most of the current study on water chlorophyll-a monitoring chose the sensitive band based on the water chlorophyll-a spectral characteristics, and then established the inversion model. Some researchers established the water parameters inversion model based on an analytical physical mechanism, which are more complex and difficult to use in practice. And we also noticed that a vertical comparative analysis was needed for all these different inversion methods in the same area, and a few researchers used the water chlorophyll-a absorption similarity with leaf to build the water chlorophyll-a retrieval model. In this paper, a new water chlorophyll-a retrival index WCI (Water Chlorophyll-a Index) was built from the land surface vegetation chlorophyll retrieval index MTCI (MERIS terrestrial chlorophyll index), based on the in-situ water hyperspectral data and water chlorophyll-a content results in the laboratory in July 2012 in the Lijiang River, Guangxi Zhuang Autonomous Region. The MTCI was based on the fast climbing vegetation reflectance in 680-750 nm also called the “red edge.” The MTCI was easy to calculate, and had a strong correlation with leaf chlorophyll-a content. From the beginning of 2004, the MTCI has became the core algorithm of the land chlorophyll-a product on ESA Envisat satellite’s MERIS sensor. This index is now widely used in land leaf chlorophyll-a retrival and net primary productivity (NPP) estimation. The WCI index also uses the different ratio of characteristic bands to represent the water chlorophyll-a content. The WCI index uses hyperspectral water reflectance at 650, 685, and 696 nm. We used the traditional method at the same location to verify all these models’s effect. The traditional methods consist of the reflectance model, reflectance ratio model, and the semi-analytical model (three bands model). The three traditional methods directly selected the water spectral reflectance at certain bands. Spectral smoothing can reduce the band noise at certain extent, but is easy to select the wrong band for the measured hyperspectral data because the absorption and reflection peak of water spectrum has big differences in different water spectrum curves. Our research also moticed that the change information of water spectrum was more useful compared with the water spectrum itself. Our results indicated that the new WCI index showed the best coefficient of determination 0.58 and the least RMSE 0.24 compared with the reflectance model, reflectance ratio model, and semi-analytical model. The test results also showed that the WCI model can retrieve the water chlorophyll-a content effectively at Tianjin City Haihe River. This method extended the idea of water chlorophyll-a content modeling from the view of the terrestrial vegetation chlorophyll-a monitoring, and has certain instructive effect on water chlorophyll-a content monitoring. More situ data of different water bodies is needed to verify the new model’s robustness and effectiveness.