农业工程学报
農業工程學報
농업공정학보
2014年
3期
104-111
,共8页
李月芬%王冬艳%Viengsouk Lasoukanh%杨小琳%李文博%赵一嬴%孙超
李月芬%王鼕豔%Viengsouk Lasoukanh%楊小琳%李文博%趙一嬴%孫超
리월분%왕동염%Viengsouk Lasoukanh%양소림%리문박%조일영%손초
神经网络%模型%土壤%生态化学计量学%羊草%碳氮磷%吉林西部
神經網絡%模型%土壤%生態化學計量學%羊草%碳氮燐%吉林西部
신경망락%모형%토양%생태화학계량학%양초%탄담린%길림서부
neural networks%models%soils%ecological stoichiometry%Leymus chinensis%carbon,nitrogen and phosphorus%Western Jilin Province
生态化学计量学是研究植物-土壤相互作用与从元素计量的角度分析生物地球化学元素区域循环规律的新思路,是当前生态化学计量学的研究热点和前沿。该文以羊草碳、氮、磷的含量为研究对象,选用能够模拟输入与输出层非线性关系的径向基函数(radial basis function,RBF)神经网络,在土壤相关化学性质与羊草碳、氮、磷含量之间建立模型,构建最优的羊草碳、氮、磷含量的预测模型。研究结果显示,采用土壤营养元素及相关化学性质作为输入层,羊草碳、氮、磷含量作为输出层,利用Matlab软件建立RBF神经网络模型,模拟预测羊草碳氮磷平均质量分数分别为411.46,18.25和1.11 mg/g,皆低于全球陆生植物叶片碳氮磷的平均含量;羊草C/N值、C/P值和N/P平均值分别为24.70、429.24和17.92,皆高于全球陆生植物叶片C/N值、C/P值、N/P值;羊草N/P为17.92,其生长主要受P元素的限制。预测结果与实际情况比较符合,这说明RBF人工神经网络模型用于模拟预测羊草碳、氮、磷含量与土壤化学性质之间的关系是可行的,可以较准确地估测羊草碳氮磷含量,平均相对误差分别为1.39%,4.69%和7.65%。
生態化學計量學是研究植物-土壤相互作用與從元素計量的角度分析生物地毬化學元素區域循環規律的新思路,是噹前生態化學計量學的研究熱點和前沿。該文以羊草碳、氮、燐的含量為研究對象,選用能夠模擬輸入與輸齣層非線性關繫的徑嚮基函數(radial basis function,RBF)神經網絡,在土壤相關化學性質與羊草碳、氮、燐含量之間建立模型,構建最優的羊草碳、氮、燐含量的預測模型。研究結果顯示,採用土壤營養元素及相關化學性質作為輸入層,羊草碳、氮、燐含量作為輸齣層,利用Matlab軟件建立RBF神經網絡模型,模擬預測羊草碳氮燐平均質量分數分彆為411.46,18.25和1.11 mg/g,皆低于全毬陸生植物葉片碳氮燐的平均含量;羊草C/N值、C/P值和N/P平均值分彆為24.70、429.24和17.92,皆高于全毬陸生植物葉片C/N值、C/P值、N/P值;羊草N/P為17.92,其生長主要受P元素的限製。預測結果與實際情況比較符閤,這說明RBF人工神經網絡模型用于模擬預測羊草碳、氮、燐含量與土壤化學性質之間的關繫是可行的,可以較準確地估測羊草碳氮燐含量,平均相對誤差分彆為1.39%,4.69%和7.65%。
생태화학계량학시연구식물-토양상호작용여종원소계량적각도분석생물지구화학원소구역순배규률적신사로,시당전생태화학계량학적연구열점화전연。해문이양초탄、담、린적함량위연구대상,선용능구모의수입여수출층비선성관계적경향기함수(radial basis function,RBF)신경망락,재토양상관화학성질여양초탄、담、린함량지간건립모형,구건최우적양초탄、담、린함량적예측모형。연구결과현시,채용토양영양원소급상관화학성질작위수입층,양초탄、담、린함량작위수출층,이용Matlab연건건립RBF신경망락모형,모의예측양초탄담린평균질량분수분별위411.46,18.25화1.11 mg/g,개저우전구륙생식물협편탄담린적평균함량;양초C/N치、C/P치화N/P평균치분별위24.70、429.24화17.92,개고우전구륙생식물협편C/N치、C/P치、N/P치;양초N/P위17.92,기생장주요수P원소적한제。예측결과여실제정황비교부합,저설명RBF인공신경망락모형용우모의예측양초탄、담、린함량여토양화학성질지간적관계시가행적,가이교준학지고측양초탄담린함량,평균상대오차분별위1.39%,4.69%화7.65%。
Ecological stoichiometry is an emerging discipline started in China in recent years. It is the science of studying the balance of energy and elements (i.e. carbon, nitrogen and phosphorus) in ecological processes and ecological interaction, providing an integrative approach to investigate the stoichiometric relationships and rules in the biogeochemical cycling and ecological processes. It has been one of the hotly-discussed issues in ecological research. The contents of carbon, nitrogen, and phosphorus is a core issue in ecological stoichiometry studies. It is necessary to choose a method that can simulate and accurately predict the contents of plant carbon, nitrogen, and phosphorus in order to avoid destructive sampling. There is a complex nonlinear relationship between plant carbon, nitrogen, phosphorus, and soil physical and chemical properties. It is difficult to accurately predict plant carbon, nitrogen, and phosphorus by using traditional methods and models such as linear regression and a BP neural network. As a new artificial neural network model, a RBF (radial basis function) neural network has some advantages of fast learning, getting in the local minimum, and approximating any arbitrary accuracy of the global nonlinear relationship. Therefore, a RBF neural network can show an ability to handle a complex nonlinear relationship. Currently, a RBF neural network is one of the most accepted prediction methods. Taking the prediction of 38 samples as a research sample, this paper established a prediction model based on a RBF Neural network from seven impact indexes including pH, the total soluble salt, total carton, total nitrogen, total phosphorus, available nitrogen, and available phosphorus. Taking the prediction of five samples as a test sample, the results indicated that the relative errors of carbon, nitrogen, and phosphorus contents were only 1.39%, 4.69%, and 7.65%, respectively, and the correlation coefficients were 0.5, 0.93, and 0.94 respectively.Therefore, a RBF neural network had higher prediction accuracy. The statistical results showed that the average contents of carbon, nitrogen, and phosphorus inLeymus chinensis (103 samples) were 411.46, 18.25, and 1.11 mg/g, respectively. They are all lower than the global average contents of carbon, nitrogen, and phosphorus in a terrestrial plant. The values of C/N, C/P, and N/P were 24.70, 429.24, and 17.92, respectively inLeymus chinensis. They were all higher than those in a global terrestrial plant. The N/P was 17.92 inLeymus chinensis. The growth ofLeymus chinensis in the research area was limited by phosphorus.