智能系统学报
智能繫統學報
지능계통학보
CAAI TRANSACTIONS ON INTELLIGENT SYSTEMS
2013年
5期
453-458
,共6页
郭文强%高晓光%侯勇严%周强
郭文彊%高曉光%侯勇嚴%週彊
곽문강%고효광%후용엄%주강
智能农业车辆%MSBN%多智能体%协同推理%环境识别
智能農業車輛%MSBN%多智能體%協同推理%環境識彆
지능농업차량%MSBN%다지능체%협동추리%배경식별
intelligent agricultural vehicle%multiply sectioned Bayesian network ( MSBN )%multi-agent%coordina-tive inference%environment recognition
为了解决智能农业车辆对所处复杂农田环境的识别信度定量分析困难的问题,提出了基于多连片贝叶斯网( MSBN)多智能体协同推理的目标识别算法。该方法把多智能体图像采集系统的局部信息表征在MSBN模型中,在观测不完备条件下,虽然单个智能体仅拥有目标的局部观测信息,但利用重叠子域信息的更新可以进行子网间消息的传播。利用MSBN局部推理和子网间信度通信的全局推理对多源信息进行融合,以提高识别性能。实验结果表明,与传统神经网络或BN方法相比,基于MSBN目标识别算法有效地对多源信息进行了补充,可以提高农业车辆在复杂环境进行识别的准确性。
為瞭解決智能農業車輛對所處複雜農田環境的識彆信度定量分析睏難的問題,提齣瞭基于多連片貝葉斯網( MSBN)多智能體協同推理的目標識彆算法。該方法把多智能體圖像採集繫統的跼部信息錶徵在MSBN模型中,在觀測不完備條件下,雖然單箇智能體僅擁有目標的跼部觀測信息,但利用重疊子域信息的更新可以進行子網間消息的傳播。利用MSBN跼部推理和子網間信度通信的全跼推理對多源信息進行融閤,以提高識彆性能。實驗結果錶明,與傳統神經網絡或BN方法相比,基于MSBN目標識彆算法有效地對多源信息進行瞭補充,可以提高農業車輛在複雜環境進行識彆的準確性。
위료해결지능농업차량대소처복잡농전배경적식별신도정량분석곤난적문제,제출료기우다련편패협사망( MSBN)다지능체협동추리적목표식별산법。해방법파다지능체도상채집계통적국부신식표정재MSBN모형중,재관측불완비조건하,수연단개지능체부옹유목표적국부관측신식,단이용중첩자역신식적경신가이진행자망간소식적전파。이용MSBN국부추리화자망간신도통신적전국추리대다원신식진행융합,이제고식별성능。실험결과표명,여전통신경망락혹BN방법상비,기우MSBN목표식별산법유효지대다원신식진행료보충,가이제고농업차량재복잡배경진행식별적준학성。
In order to solve the problem existing in the agricultural environment recognition of intelligent vehicles , due to the difficulty of conducting quantitative analysis of the reliability of such recognition , a target recognition al-gorithm for multi-agent cooperative inference based on the multiply sectioned Bayesian network ( MSBN) has been proposed.This method characterizes local information of the multi-agent image acquiring system with MSBN model . In the circumstance of incomplete observations , although each single agent may only capture some local observation information from the target , the message propagation among subnets can be achieved by information update in the o -verlapping sub-domains.By combining the local inference and global inference of reliability communication between subnets in MSBN , the multi-source information was merged to enhance recognition performance .By comparing the traditional neural network and BN method , experimental results illustrate that , the target recognition algorithm based on MSBN can effectively supplement multi-source information , and thus, can improve the recognition accura-cy of agricultural vehicles in the complicated environment .