粮油食品科技
糧油食品科技
량유식품과기
SCIENCE AND TECHNOLOGY OF CEREALS,OILS AND FOODS
2012年
2期
27-30
,共4页
周新奇%杨伟伟%房兆华%桑强%叶华俊%张学锋%陈智锋
週新奇%楊偉偉%房兆華%桑彊%葉華俊%張學鋒%陳智鋒
주신기%양위위%방조화%상강%협화준%장학봉%진지봉
神经网络%近红外光谱%豆粕
神經網絡%近紅外光譜%豆粕
신경망락%근홍외광보%두박
artificial neural network (ANN)%near infrared spectroscopy (NIRS)%soybean meal
应用近红外漫反射光谱技术结合误差反向传递人工神经网络(BP—ANN)算法,建立豆粕品质(包括水分、粗蛋白、残油)的定量分析模型。将豆粕漫反射吸收光谱数据进行SNV、DT、SG求导、SG平滑和均值中心化处理,然后采用偏最小二乘方法(PLS)降维获取主成分,并优化选择合适的隐含层节点数、隐含层和输出层转化函数,建立校正模型,并用验证样品对校正模型进行验证。结果显示,BP—ANN法建立的水分、粗蛋白和残油的预测相关系数(R)分别为0.981、0.988、0.982,预测标准偏差(SEP)分别为0.120、0.216、0.036,均优于PLS建模方法结果,且满足传统分析方法的重复性要求,表明BP—ANN方法可用于生产过程豆粕品质的快速监控。
應用近紅外漫反射光譜技術結閤誤差反嚮傳遞人工神經網絡(BP—ANN)算法,建立豆粕品質(包括水分、粗蛋白、殘油)的定量分析模型。將豆粕漫反射吸收光譜數據進行SNV、DT、SG求導、SG平滑和均值中心化處理,然後採用偏最小二乘方法(PLS)降維穫取主成分,併優化選擇閤適的隱含層節點數、隱含層和輸齣層轉化函數,建立校正模型,併用驗證樣品對校正模型進行驗證。結果顯示,BP—ANN法建立的水分、粗蛋白和殘油的預測相關繫數(R)分彆為0.981、0.988、0.982,預測標準偏差(SEP)分彆為0.120、0.216、0.036,均優于PLS建模方法結果,且滿足傳統分析方法的重複性要求,錶明BP—ANN方法可用于生產過程豆粕品質的快速鑑控。
응용근홍외만반사광보기술결합오차반향전체인공신경망락(BP—ANN)산법,건립두박품질(포괄수분、조단백、잔유)적정량분석모형。장두박만반사흡수광보수거진행SNV、DT、SG구도、SG평활화균치중심화처리,연후채용편최소이승방법(PLS)강유획취주성분,병우화선택합괄적은함층절점수、은함층화수출층전화함수,건립교정모형,병용험증양품대교정모형진행험증。결과현시,BP—ANN법건립적수분、조단백화잔유적예측상관계수(R)분별위0.981、0.988、0.982,예측표준편차(SEP)분별위0.120、0.216、0.036,균우우PLS건모방법결과,차만족전통분석방법적중복성요구,표명BP—ANN방법가용우생산과정두박품질적쾌속감공。
The models of quantitative analysis of mositure, protein and residual oil in soybean meal were established by back propagation- artifical neural network method (BP- ANN) combined with near infrared diffuse reflectance spectroscopy. Firstly, the original absorbance spectra of soybean meal samples were pretreated by SNV, DT, Savitzky - Golay derivative , Savitzky - Golay smoothing and mean - centering. Secondly, the principal components were obtained by PLS dimension - reducing, and the number of hidden node, transfer functions of hidden layer and output layer were optimized ; Finally, all the parameers were inputed into BP- ANN to easablish the calibration model. Then the models were validated by prediction set. The results showed that the correlation coefficients (R) of prediction for moisture, crude protein and residual oil were 0. 981,0. 988 and 0. 982 respectively; and the standard errors of prediction (SEP) were 0. 120,0. 216,0. 036, respectively. It shows that BP - ANN was more accurate compared with the partial least square method (PLS). Furthermore, the results meets the repeatability of traditional analysis method, it can be applied to rapid monitoring of soybean meal quality.