天然气化工
天然氣化工
천연기화공
NATURAL GAS CHEMICAL INDUSTRY
2014年
1期
6-11
,共6页
张明烨%崔宇%李玉新%魏飞%王垚
張明燁%崔宇%李玉新%魏飛%王垚
장명엽%최우%리옥신%위비%왕요
甲醇制烯烃%MTO%SAPO-34催化剂%积炭裂解%活化能%热重质谱联用
甲醇製烯烴%MTO%SAPO-34催化劑%積炭裂解%活化能%熱重質譜聯用
갑순제희경%MTO%SAPO-34최화제%적탄렬해%활화능%열중질보련용
methanol to olefins%MTP%SAPO-34 catalyst%coke cracking%activation energy%TGA-MS
考察了甲醇制烯烃(MTO)过程使SAPO-34沸石催化剂失活的积炭在惰性气氛程序升温下的裂解反应,发现积炭中存在大量在400℃~600℃可裂解的组分。通过热重-质谱联用研究了积炭的裂解特性,确认裂解的气体产物主要为丙烯和乙烯。通过气质联用及原位红外分析裂解前后的积炭组成变化,证明乙烯、丙烯是部分积炭物种(如:多甲基苯、多甲基萘等)在高温下裂解脱甲基侧链的产物,同时生成无侧链的稠环芳烃。通过不同升温速率下乙烯和丙烯生成速率变化,计算得到积炭物种裂解生成乙烯和丙烯的表观活化能分别为68.4kJ/mol和47.5kJ/mol。上述结果说明,在失活催化剂烧焦再生之前,可采用高温汽提裂解积炭,降低MTO过程的焦炭选择性,增产烯烃产品。由于裂解生成乙烯的表观活化能高于生成丙烯的活化能,因此降低温度有利于提高丙烯与乙烯之比。
攷察瞭甲醇製烯烴(MTO)過程使SAPO-34沸石催化劑失活的積炭在惰性氣氛程序升溫下的裂解反應,髮現積炭中存在大量在400℃~600℃可裂解的組分。通過熱重-質譜聯用研究瞭積炭的裂解特性,確認裂解的氣體產物主要為丙烯和乙烯。通過氣質聯用及原位紅外分析裂解前後的積炭組成變化,證明乙烯、丙烯是部分積炭物種(如:多甲基苯、多甲基萘等)在高溫下裂解脫甲基側鏈的產物,同時生成無側鏈的稠環芳烴。通過不同升溫速率下乙烯和丙烯生成速率變化,計算得到積炭物種裂解生成乙烯和丙烯的錶觀活化能分彆為68.4kJ/mol和47.5kJ/mol。上述結果說明,在失活催化劑燒焦再生之前,可採用高溫汽提裂解積炭,降低MTO過程的焦炭選擇性,增產烯烴產品。由于裂解生成乙烯的錶觀活化能高于生成丙烯的活化能,因此降低溫度有利于提高丙烯與乙烯之比。
고찰료갑순제희경(MTO)과정사SAPO-34비석최화제실활적적탄재타성기분정서승온하적렬해반응,발현적탄중존재대량재400℃~600℃가렬해적조분。통과열중-질보련용연구료적탄적렬해특성,학인렬해적기체산물주요위병희화을희。통과기질련용급원위홍외분석렬해전후적적탄조성변화,증명을희、병희시부분적탄물충(여:다갑기분、다갑기내등)재고온하렬해탈갑기측련적산물,동시생성무측련적주배방경。통과불동승온속솔하을희화병희생성속솔변화,계산득도적탄물충렬해생성을희화병희적표관활화능분별위68.4kJ/mol화47.5kJ/mol。상술결과설명,재실활최화제소초재생지전,가채용고온기제렬해적탄,강저MTO과정적초탄선택성,증산희경산품。유우렬해생성을희적표관활화능고우생성병희적활화능,인차강저온도유리우제고병희여을희지비。
The cracking behaviors of the coke deposited on the SAPO-34 zeolite catalyst in the methanol-to-olefins (MTO) process, which resulted in the deactivation of catalyst, were investigated by temperature programmed heating in an inert atmosphere, and it was found that much of the coke could be cracked at 400-600℃. TGA-MS analysis showed that the main gaseous cracking products were propylene and ethylene. The change of coke before and after cracking was determined by GC-MS and in situ IR, and the results indicated that ethylene and propylene were produced by the cracking of the side chain of the multi-methylbenzene and multi-methylnaphthalene species in the coke, which then formed polycyclic aromatic hydrocarbons without methyl side chains. From the production rates of ethylene and propylene under different temperature-increased rates, the apparent activation energies for the formation of ethylene and propylenewere calculated to be 68.4kJ/mol and 47.5kJ/mol, respectively. The results implied that the coke selectivity in MTO process could be reduced by high temperature stripping of the catalyst before the burning regeneration, which would increase the yield of olefins. Since the apparent activation energy for ethylene formation is higher than that for propylene formation, the ratio of propylene to ethylene in the cracking gaseous product would increase with decreasing temperature.