交通信息与安全
交通信息與安全
교통신식여안전
JOURNAL OF TRANSPORT INFORMATION AND SAFETY
2014年
1期
29-33
,共5页
交通拥堵%速度特性%拥堵判别%浮动车
交通擁堵%速度特性%擁堵判彆%浮動車
교통옹도%속도특성%옹도판별%부동차
traffic congestion%speed characteristics%congestion identification%floating car
基于城市快速路浮动车技术,获取北京市快速路瓶颈路段全天交通流运行速度时间序列数据,对快速路常发性交通拥堵形成及消散进行精细化定量分析。首先应用小波分析技术对数据进行降噪处理,依据速度变化特性将快速路瓶颈处交通流运行状态划分为稳定运行态、拥堵形成态、拥堵态及拥堵消散态4种状态,并分析不同状态下的速度表现特征。研究表明,应用速度变化量可以判别交通流所处状态,而后利用统计学方法给出不同状态之间变化的判断阈值,并归纳出快速路常发性交通拥堵形成时刻、消散时刻及持续时间的判别方法。该方法对拥堵特性判别精度可达80%以上,对交通拥堵预测及交通管理具有明显实际应用价值。
基于城市快速路浮動車技術,穫取北京市快速路瓶頸路段全天交通流運行速度時間序列數據,對快速路常髮性交通擁堵形成及消散進行精細化定量分析。首先應用小波分析技術對數據進行降譟處理,依據速度變化特性將快速路瓶頸處交通流運行狀態劃分為穩定運行態、擁堵形成態、擁堵態及擁堵消散態4種狀態,併分析不同狀態下的速度錶現特徵。研究錶明,應用速度變化量可以判彆交通流所處狀態,而後利用統計學方法給齣不同狀態之間變化的判斷閾值,併歸納齣快速路常髮性交通擁堵形成時刻、消散時刻及持續時間的判彆方法。該方法對擁堵特性判彆精度可達80%以上,對交通擁堵預測及交通管理具有明顯實際應用價值。
기우성시쾌속로부동차기술,획취북경시쾌속로병경로단전천교통류운행속도시간서렬수거,대쾌속로상발성교통옹도형성급소산진행정세화정량분석。수선응용소파분석기술대수거진행강조처리,의거속도변화특성장쾌속로병경처교통류운행상태화분위은정운행태、옹도형성태、옹도태급옹도소산태4충상태,병분석불동상태하적속도표현특정。연구표명,응용속도변화량가이판별교통류소처상태,이후이용통계학방법급출불동상태지간변화적판단역치,병귀납출쾌속로상발성교통옹도형성시각、소산시각급지속시간적판별방법。해방법대옹도특성판별정도가체80%이상,대교통옹도예측급교통관리구유명현실제응용개치。
By using floating car technology on urban expressway ,time series speed data were obtained .The time series speed data were processed and then used to analyze and quantify the formation and dissipation of the recurred con -gestions on the bottleneck sections of Beijing expressways .First ,Wavelet analysis method was applied to reducing the noise in the time-series data .The traffic bottleneck condition can be divided into four states ,namely ,steady-state opera-tion ,formation of congestion ,congested state ,and dissipation of congestion according to the characteristics of speed vari-ation .Each traffic bottleneck state can be determined by applying the speed variation amount as the evaluation index .Sta-tistical method was used to determine the threshold from one state changing to another state .The index and threshold can be used to induct the traffic congestion formation time ,dissipation time and duration of congestion .The accuracy rate of the method for identifying traffic congestion is more than 80 percent .The method can provide significant practical benefit for congestion prediction and traffic management .