舰船科学技术
艦船科學技術
함선과학기술
SHIP SCIENCE AND TECHNOLOGY
2014年
1期
46-51
,共6页
圆柱壳体%辐射声场%有源激励%结构阻尼%集中效应
圓柱殼體%輻射聲場%有源激勵%結構阻尼%集中效應
원주각체%복사성장%유원격려%결구조니%집중효응
cylindrical shell%radiated acoustics field%source excitation%structural damping%concentration effect
理论研究有源点激励时水中有限长圆柱壳体辐射声场特性。根据圆柱壳体耦合振动理论,推导有源点激励时水中有限长圆柱壳体振动速度与辐射声压计算式,计算并分析有源点激励时水中有限长圆柱壳体振动速度分布特征、声辐射近场和远场特性。研究结果表明:随着结构阻尼增大,圆柱壳体振动能量与声辐射能量向激励点处集中,且频率越高,这种集中效应越显著。在声辐射近场,声压衰减较快,其分布规律与壳体振动分布规律相近;在声辐射远场,声压衰减规律近似为球面波衰减,声压分布具有一定指向性,且激励力作用方向为声辐射主要方向。
理論研究有源點激勵時水中有限長圓柱殼體輻射聲場特性。根據圓柱殼體耦閤振動理論,推導有源點激勵時水中有限長圓柱殼體振動速度與輻射聲壓計算式,計算併分析有源點激勵時水中有限長圓柱殼體振動速度分佈特徵、聲輻射近場和遠場特性。研究結果錶明:隨著結構阻尼增大,圓柱殼體振動能量與聲輻射能量嚮激勵點處集中,且頻率越高,這種集中效應越顯著。在聲輻射近場,聲壓衰減較快,其分佈規律與殼體振動分佈規律相近;在聲輻射遠場,聲壓衰減規律近似為毬麵波衰減,聲壓分佈具有一定指嚮性,且激勵力作用方嚮為聲輻射主要方嚮。
이론연구유원점격려시수중유한장원주각체복사성장특성。근거원주각체우합진동이론,추도유원점격려시수중유한장원주각체진동속도여복사성압계산식,계산병분석유원점격려시수중유한장원주각체진동속도분포특정、성복사근장화원장특성。연구결과표명:수착결구조니증대,원주각체진동능량여성복사능량향격려점처집중,차빈솔월고,저충집중효응월현저。재성복사근장,성압쇠감교쾌,기분포규률여각체진동분포규률상근;재성복사원장,성압쇠감규률근사위구면파쇠감,성압분포구유일정지향성,차격려력작용방향위성복사주요방향。
The radiated acoustic field characteristics of cylindrical shell with finite length in water excited by a point source were studied theoretically. According to the cylindrical shell coupled vibration theory, the analytic expressions of radiation acoustic pressure and vibration velocity of finite cylindrical shell in water excited by a point source ane derived. Based on these formulas, the vibration velocity distribution along with cylindrical shell and acoustic radiation characteristics at near field and far field were solved and investigated. The research results show that the vibration energy and acoustic radiation energy of cylindrical shell concentrate on the excitation points with the increase of the structural damping, and this effect becomes stronger when the frequency increases. In the near field, the acoustic pressure attenuates quickly with approximate distribution as the shell vibration. In the far field, the acoustic pressure attenuation shows approximate spherical wave attenuation, and the acoustic pressure distribution has a certain direction, in which the main direction of acoustic radiation is the same as the direction of excitation.