粉末冶金材料科学与工程
粉末冶金材料科學與工程
분말야금재료과학여공정
POWDER METALLURGY MATERIALS SCIENCE AND ENGINEERING
2014年
1期
101-107
,共7页
余志明%刘丹瑛%魏秋平%张雄伟%龙芬%罗嘉祺%王一佳
餘誌明%劉丹瑛%魏鞦平%張雄偉%龍芬%囉嘉祺%王一佳
여지명%류단영%위추평%장웅위%룡분%라가기%왕일가
氮化铝薄膜%反应溅射%择优取向%纳米压痕%硬度
氮化鋁薄膜%反應濺射%擇優取嚮%納米壓痕%硬度
담화려박막%반응천사%택우취향%납미압흔%경도
AlN films%reactive sputtering%preferred orientations%nanoindentation%hardness
用Ar气和N2气分别作为溅射气体和反应气体,采用射频反应磁控溅射法,通过调节工作气体(Ar气与N2气的混合气体)中N2的含量(体积分数)φ(N2),在硅(100)衬底上制备一系列六方结构AlN多晶薄膜,利用X射线衍射(XRD)、扫描电镜(SEM)、原子力显微镜(AFM)和纳米压痕仪等对薄膜特性进行测试与分析。结果表明,φ(N2)对AlN薄膜的择优取向、结晶性、沉积速率与力学性能的影响都十分显著,对薄膜的微观结构和表面粗糙度也有一定影响:随φ(N2)增大,薄膜的厚度和沉积速率逐渐减小,结晶性也发生显著变化;较高的φ(N2)有利于AlN薄膜沿(002)晶面择优生长;φ(N2)对AlN薄膜的硬度影响较大,而对弹性模量影响较小。实验制备的AlN薄膜具有良好的纳米力学性能,硬度平均值在12.0~29.3 GPa之间,弹性模量平均值在184.0~209.8 GPa之间。
用Ar氣和N2氣分彆作為濺射氣體和反應氣體,採用射頻反應磁控濺射法,通過調節工作氣體(Ar氣與N2氣的混閤氣體)中N2的含量(體積分數)φ(N2),在硅(100)襯底上製備一繫列六方結構AlN多晶薄膜,利用X射線衍射(XRD)、掃描電鏡(SEM)、原子力顯微鏡(AFM)和納米壓痕儀等對薄膜特性進行測試與分析。結果錶明,φ(N2)對AlN薄膜的擇優取嚮、結晶性、沉積速率與力學性能的影響都十分顯著,對薄膜的微觀結構和錶麵粗糙度也有一定影響:隨φ(N2)增大,薄膜的厚度和沉積速率逐漸減小,結晶性也髮生顯著變化;較高的φ(N2)有利于AlN薄膜沿(002)晶麵擇優生長;φ(N2)對AlN薄膜的硬度影響較大,而對彈性模量影響較小。實驗製備的AlN薄膜具有良好的納米力學性能,硬度平均值在12.0~29.3 GPa之間,彈性模量平均值在184.0~209.8 GPa之間。
용Ar기화N2기분별작위천사기체화반응기체,채용사빈반응자공천사법,통과조절공작기체(Ar기여N2기적혼합기체)중N2적함량(체적분수)φ(N2),재규(100)츤저상제비일계렬륙방결구AlN다정박막,이용X사선연사(XRD)、소묘전경(SEM)、원자력현미경(AFM)화납미압흔의등대박막특성진행측시여분석。결과표명,φ(N2)대AlN박막적택우취향、결정성、침적속솔여역학성능적영향도십분현저,대박막적미관결구화표면조조도야유일정영향:수φ(N2)증대,박막적후도화침적속솔축점감소,결정성야발생현저변화;교고적φ(N2)유리우AlN박막연(002)정면택우생장;φ(N2)대AlN박막적경도영향교대,이대탄성모량영향교소。실험제비적AlN박막구유량호적납미역학성능,경도평균치재12.0~29.3 GPa지간,탄성모량평균치재184.0~209.8 GPa지간。
The wurtzite structural aluminum nitride (AlN) films were deposited on Si(100) wafers by reactive radio frequency (RF) magnetron sputtering system, using a gas mixture of Ar(sputtering gas)and N2 (reactive gas) with varying nitrogen flow ratio. The properties of aluminum nitride thin films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and nanoindentation techniques. The results show that the preferred orientation, crystallinity, deposition rate and nanomechanical properties significantly depend upon the nitrogen flow ratio. The microstructure and the surface roughness are also influenced by the nitrogen flow ratio. As the nitrogen flow ratio increases, the thickness and deposition rate of the film decrease, and the crystallinity of the films changes obviously. The growing of AlN films along preferred orientation (002) is improved under higher nitrogen flow ratio. The nitrogen concentration has little influence on the elastic modulus but obviously affects the hardness of AlN films. The AlN films fabricated in this study have excellent nano-mechanics properties with hardness in the range of 12.0~29.3 GPa and elastic modulus in the range of 184.0~209.8 GPa.