导弹与航天运载技术
導彈與航天運載技術
도탄여항천운재기술
MISSILES AND SPACE VEHICLES
2014年
1期
17-20
,共4页
许考%陈连忠%董永晖%张友华
許攷%陳連忠%董永暉%張友華
허고%진련충%동영휘%장우화
冷壁热流%归一化%翼%电弧风洞
冷壁熱流%歸一化%翼%電弧風洞
랭벽열류%귀일화%익%전호풍동
Cold-wall heat flux%Normalization%Wing%Arc wind tunnel
通过实验并结合工程算法研究电弧风洞内翼前缘、翼面及翼轴上的冷壁热流密度在不同来流总焓或相同来流总焓条件下的变化规律。结果表明:对于相同测试件和相同喷管来说,无论来流总焓变化与否,前缘及翼面上某固定点的冷壁热流密度基本上呈同步变化;当来流总焓不变时,翼面上同一测点热流密度与前缘上与其在同一平面内测点热流密度比值基本不变,该平面垂直于前缘中心线;当来流总焓变化时,两比值轻微变化,但幅度较小,而翼的底部缝隙内的轴上热流密度与前缘热流密度比值变化幅度较大。利用上述结果,由翼前缘上热流密度可推算出翼面的热流密度,反之亦然。
通過實驗併結閤工程算法研究電弧風洞內翼前緣、翼麵及翼軸上的冷壁熱流密度在不同來流總焓或相同來流總焓條件下的變化規律。結果錶明:對于相同測試件和相同噴管來說,無論來流總焓變化與否,前緣及翼麵上某固定點的冷壁熱流密度基本上呈同步變化;噹來流總焓不變時,翼麵上同一測點熱流密度與前緣上與其在同一平麵內測點熱流密度比值基本不變,該平麵垂直于前緣中心線;噹來流總焓變化時,兩比值輕微變化,但幅度較小,而翼的底部縫隙內的軸上熱流密度與前緣熱流密度比值變化幅度較大。利用上述結果,由翼前緣上熱流密度可推算齣翼麵的熱流密度,反之亦然。
통과실험병결합공정산법연구전호풍동내익전연、익면급익축상적랭벽열류밀도재불동래류총함혹상동래류총함조건하적변화규률。결과표명:대우상동측시건화상동분관래설,무론래류총함변화여부,전연급익면상모고정점적랭벽열류밀도기본상정동보변화;당래류총함불변시,익면상동일측점열류밀도여전연상여기재동일평면내측점열류밀도비치기본불변,해평면수직우전연중심선;당래류총함변화시,량비치경미변화,단폭도교소,이익적저부봉극내적축상열류밀도여전연열류밀도비치변화폭도교대。이용상술결과,유익전연상열류밀도가추산출익면적열류밀도,반지역연。
The variation rules of the cold-wall heat flux on the leading edge, the surface and the axis of some wing when the total flow enthalpy was uniform or different were respectively studied by experiments combined with engineering calculation. The results showed that, for the same test article and the same nozzle, the cold-wall heat flux on the leading edges and the surface of some wing varied synchronously regardless of the varying condition of the flow enthalpy;the ratio of the cold-wall heat flux on the wing surface to that on the leading edge kept invariable when the flow enthalpy was constant; and when the total flow enthalpy changed, that ratio varied slightly, but the ratio of the cold-wall heat flux on the axial of the wing to that on the leading edge varied largely. The testing positions of heat flux on the surface and the leading edge of the wing were in the same plane which was perpendicular to the central line of the leading edge. According to the conclusion above, the cold-wall heat flux on the wing surface could be reckoned from the cold-wall heat flux on the leading edge and vice versa.