东北林业大学学报
東北林業大學學報
동북임업대학학보
JOURNAL OF NORTHEAST FORESTRY UNIVERSITY
2014年
1期
51-56
,共6页
黎良财%张晓丽%郭航
黎良財%張曉麗%郭航
려량재%장효려%곽항
影像融合%Gram-Schmidt光谱锐化法%灰度共生矩阵%支持向量机%植被分类
影像融閤%Gram-Schmidt光譜銳化法%灰度共生矩陣%支持嚮量機%植被分類
영상융합%Gram-Schmidt광보예화법%회도공생구진%지지향량궤%식피분류
Image fusion%Gram-Schmidt spectral sharpening method%Gray level co-occurrence matrix ( GLCM )%Support vector machine ( SVM)%Vegetation extraction
运用SPOT-5全色和多光谱影像,采用支持向量机( SVM)法对森林植被进行分类研究,探讨了SVM法的分类能力以及纹理信息在森林植被分类中的影响。结果表明:Gram-Schmidt光谱锐化法是北京山区SPOT-5影像最佳的融合方法;SVM法在高分辨率影像森林植被分类中精度较高,不同核函数对分类精度的影响不显著;基于灰度共生矩阵产生的纹理信息能够提高SVM法的分类精度,3×3窗口是提高分类精度的最佳纹理窗口。
運用SPOT-5全色和多光譜影像,採用支持嚮量機( SVM)法對森林植被進行分類研究,探討瞭SVM法的分類能力以及紋理信息在森林植被分類中的影響。結果錶明:Gram-Schmidt光譜銳化法是北京山區SPOT-5影像最佳的融閤方法;SVM法在高分辨率影像森林植被分類中精度較高,不同覈函數對分類精度的影響不顯著;基于灰度共生矩陣產生的紋理信息能夠提高SVM法的分類精度,3×3窗口是提高分類精度的最佳紋理窗口。
운용SPOT-5전색화다광보영상,채용지지향량궤( SVM)법대삼림식피진행분류연구,탐토료SVM법적분류능력이급문리신식재삼림식피분류중적영향。결과표명:Gram-Schmidt광보예화법시북경산구SPOT-5영상최가적융합방법;SVM법재고분변솔영상삼림식피분류중정도교고,불동핵함수대분류정도적영향불현저;기우회도공생구진산생적문리신식능구제고SVM법적분류정도,3×3창구시제고분류정도적최가문리창구。
The experiment was conducted to classify the forest vegetation with support vector machine (SVM) method based on SPOT-5 panchromatic and multispectral images and explore the ability with SVM method and the effect by texture informa-tion in forest vegetation classification .Gram-Schmidt spectral sharpening method is the best fusion method forSPOT -5 im-age in Beijing mountain areas.SVM method has higher classification accuracy with the fine resolution images in the forest vegetation extraction.There is no significant difference on classification accuracy with different kernel functions.Image texture information from Gray level co-occurrence matrix ( GLCM) method can improve the classification accuracy by SVM method, and the best texturewindow of 3×3 windows can improve the classification accuracy obviously.