岩土力学
巖土力學
암토역학
ROCK AND SOIL MECHANICS
2014年
2期
328-333
,共6页
横观各向同性%应力分布%强度分布%沉积方向%破坏机制
橫觀各嚮同性%應力分佈%彊度分佈%沉積方嚮%破壞機製
횡관각향동성%응력분포%강도분포%침적방향%파배궤제
cross-anisotropy%stress distribution%strength distribution%deposit direction%damage mechanism
由于沉积等作用使得天然土材料内部颗粒排列表现为各向异性。土材料的各向异性使得材料内各平面滑动的内摩擦角不同。因此,在分析各向异性土的破坏问题中,除了考虑来自外部的应力分布以外,还需考虑土材料内部的强度分布。以横观各向同性土为例,阐述了同时考虑材料外部应力分布与材料内部强度分布下各向异性土的破坏机制。为说明,文中假定横观各向同性土内部各平面的内摩擦角正切值随空间方向而线性分布。外部加载进行时,横观各向同性土材料内部各处的应力不断变化,当其内部某处首次出现的应力达到该处的强度时,土材料发生破坏。进一步通过类比得出:区别于金属,各向同性土不是在最大剪应力面而是在最大剪压比面发生破坏;区别于各向同性土,各向异性土不是在最大剪压比面而是在最大剪压强比面发生破坏。
由于沉積等作用使得天然土材料內部顆粒排列錶現為各嚮異性。土材料的各嚮異性使得材料內各平麵滑動的內摩抆角不同。因此,在分析各嚮異性土的破壞問題中,除瞭攷慮來自外部的應力分佈以外,還需攷慮土材料內部的彊度分佈。以橫觀各嚮同性土為例,闡述瞭同時攷慮材料外部應力分佈與材料內部彊度分佈下各嚮異性土的破壞機製。為說明,文中假定橫觀各嚮同性土內部各平麵的內摩抆角正切值隨空間方嚮而線性分佈。外部加載進行時,橫觀各嚮同性土材料內部各處的應力不斷變化,噹其內部某處首次齣現的應力達到該處的彊度時,土材料髮生破壞。進一步通過類比得齣:區彆于金屬,各嚮同性土不是在最大剪應力麵而是在最大剪壓比麵髮生破壞;區彆于各嚮同性土,各嚮異性土不是在最大剪壓比麵而是在最大剪壓彊比麵髮生破壞。
유우침적등작용사득천연토재료내부과립배렬표현위각향이성。토재료적각향이성사득재료내각평면활동적내마찰각불동。인차,재분석각향이성토적파배문제중,제료고필래자외부적응력분포이외,환수고필토재료내부적강도분포。이횡관각향동성토위례,천술료동시고필재료외부응력분포여재료내부강도분포하각향이성토적파배궤제。위설명,문중가정횡관각향동성토내부각평면적내마찰각정절치수공간방향이선성분포。외부가재진행시,횡관각향동성토재료내부각처적응력불단변화,당기내부모처수차출현적응력체도해처적강도시,토재료발생파배。진일보통과류비득출:구별우금속,각향동성토불시재최대전응력면이시재최대전압비면발생파배;구별우각향동성토,각향이성토불시재최대전압비면이시재최대전압강비면발생파배。
Due to sedimentation, particles in natural soil arrange anisotropically. Anisotropy diversifies the internal friction angles between relative sliding planes at different directions in soil material. Thus in failure analysis of anisotropic soil, except for conventional stress distribution coming from outside of material, strength distribution inside the material should also be taken into account in addition. Taking cross-anisotropic soil for example, failure mechanism considering both stress distribution and strength distribution is demonstrated. In the discussion, for simplicity, a linear relationship between the tangent value of the internal frictional angle of some planes in the cross-anisotropic soil and the spatial direction of the plane is presumed. For a cross-anisotropic soil sample in loading, when the condition that the stress state in somewhere of the sample achieves the strength where occurs at the first time, the cross-anisotropic soil sample is announced to be failed. Furthermore, more interesting results can also be obtained by analogy among the failure condition of three different typical materials which are metals, isotropic soils and cross-anisotropic soils. Failure occurs at the maximum shear stress plane for the metals, while for isotropic soils, the failure occurs at the maximum shear-compression ratio plane. Moreover, for cross-anisotropic soils, the failure occurs at the maximum shear-compression-strength ratio plan.