岩土力学
巖土力學
암토역학
ROCK AND SOIL MECHANICS
2014年
2期
474-480
,共7页
风化%石质构件%力学参数%声波测试%回弹测试
風化%石質構件%力學參數%聲波測試%迴彈測試
풍화%석질구건%역학삼수%성파측시%회탄측시
weathering%rock constructional element%mechanical parameters%sonic test%rebound test
针对目前常规确定岩石力学参数的方法只能得出岩块的整体强度,不能反映古建筑石质构件风化层内力学参数逐渐变化,无法很好地满足石质古建筑稳定性、耐久性研究的不足,提出了综合运用现场穿透波CT测试、表面回弹测试和室内试验确定风化石质构件力学参数的方法。方法的实施主要包括:通过现场穿透波CT测试,获得纵波波速在石质构件深度剖面上的分布;现场选取与欲研究的石质构件类似的岩石做室内力学试验和波速测试,得出力学参数与波速的统计关系;上述两者结合得出力学参数在石质构件深度剖面上的分布,在此基础上分析风化层内力学参数随深度的变化关系;对不同风化分区代表性石构件进行风化深度研究和表面回弹测试,得出构件表面强度比与风化深度的关系。以义乌宋代古月桥为例,对其方法进行了系统的介绍,并对古月桥承载条石风化层内力学参数随深度的变化关系以及表面强度与风化深度的关系进行了研究。研究表明:义乌宋代古月桥承载条石风化层内的抗压强度比、弹性模量比随深度呈负指数关系变化;表面强度比与风化深度呈2次多项式关系。
針對目前常規確定巖石力學參數的方法隻能得齣巖塊的整體彊度,不能反映古建築石質構件風化層內力學參數逐漸變化,無法很好地滿足石質古建築穩定性、耐久性研究的不足,提齣瞭綜閤運用現場穿透波CT測試、錶麵迴彈測試和室內試驗確定風化石質構件力學參數的方法。方法的實施主要包括:通過現場穿透波CT測試,穫得縱波波速在石質構件深度剖麵上的分佈;現場選取與欲研究的石質構件類似的巖石做室內力學試驗和波速測試,得齣力學參數與波速的統計關繫;上述兩者結閤得齣力學參數在石質構件深度剖麵上的分佈,在此基礎上分析風化層內力學參數隨深度的變化關繫;對不同風化分區代錶性石構件進行風化深度研究和錶麵迴彈測試,得齣構件錶麵彊度比與風化深度的關繫。以義烏宋代古月橋為例,對其方法進行瞭繫統的介紹,併對古月橋承載條石風化層內力學參數隨深度的變化關繫以及錶麵彊度與風化深度的關繫進行瞭研究。研究錶明:義烏宋代古月橋承載條石風化層內的抗壓彊度比、彈性模量比隨深度呈負指數關繫變化;錶麵彊度比與風化深度呈2次多項式關繫。
침대목전상규학정암석역학삼수적방법지능득출암괴적정체강도,불능반영고건축석질구건풍화층내역학삼수축점변화,무법흔호지만족석질고건축은정성、내구성연구적불족,제출료종합운용현장천투파CT측시、표면회탄측시화실내시험학정풍화석질구건역학삼수적방법。방법적실시주요포괄:통과현장천투파CT측시,획득종파파속재석질구건심도부면상적분포;현장선취여욕연구적석질구건유사적암석주실내역학시험화파속측시,득출역학삼수여파속적통계관계;상술량자결합득출역학삼수재석질구건심도부면상적분포,재차기출상분석풍화층내역학삼수수심도적변화관계;대불동풍화분구대표성석구건진행풍화심도연구화표면회탄측시,득출구건표면강도비여풍화심도적관계。이의오송대고월교위례,대기방법진행료계통적개소,병대고월교승재조석풍화층내역학삼수수심도적변화관계이급표면강도여풍화심도적관계진행료연구。연구표명:의오송대고월교승재조석풍화층내적항압강도비、탄성모량비수심도정부지수관계변화;표면강도비여풍화심도정2차다항식관계。
The conventional method of determining rock mechanical parameters now can only obtain the overall strength of the rock;while in the weathered layer of ancient buildings rock constructional elements, of which the mechanical parameters gradually change. It is not enough to study the stability and durability of rock ancient buildings. So a method with integrated use of on-site sonic CT test, surface rebound and laboratory test to obtain the mechanical parameters of rock constructional elements is proposed. The method is put into action as follows. The longitudinal wave velocity distributions along the depth profile in the rock constructional elements are acquired by the on-site sonic CT test. The statistical relation of the mechanical parameters and wave velocity is obtained by selecting rock on-site that analogous to the rock constructional element studied to do the indoor mechanical tests and the wave velocity test. The mechanical parameters distribution along the depth profile in the rock constructional elements is derived by combining the outcomes mentioned above;based on this, the relationship between mechanical parameters and depth within the weathered layer is analyzed. The relationship between the surface compressive strength ratio and the weathered depth is derived by weathered depth studying and surface rebound test on the typical rock constructional element in different weathering zones. This method is systematically introduced in this paper with the example of Guyue Bridge in Yiwu built in the Song Dynasty. This paper studied the relationship between mechanical parameters and depth within the weathered layer and the relationship between surface strength of rock constructional element and weathered depth of weathered rock constructional element which were in the bearing structure of the Song Dynasty Guyue Bridge in Yiwu. The studies show that:in the bearing block stone of the Song Dynasty Guyue Bridge, the compressive strength ratio and the elastic modulus ratio vary negative-exponentially with the depth in weathered layer; the relationship between compressive strength ratio of surface and weathered depth conforms to the two order polynomial.