计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2014年
5期
169-174
,共6页
游生福%汪荣贵%戴经成%张冬梅
遊生福%汪榮貴%戴經成%張鼕梅
유생복%왕영귀%대경성%장동매
在线学习%集成学习%目标检测%Gentle AdaBoost算法
在線學習%集成學習%目標檢測%Gentle AdaBoost算法
재선학습%집성학습%목표검측%Gentle AdaBoost산법
online learning%ensemble learning%object detection%Gentle AdaBoost algorithm
针对视频目标检测问题,提出一种新的在线集成学习方法。该方法把目标检测看成两类分类问题,首先用少量已标注样本离线训练一个初始集成分类器,然后在检测目标的同时通过跟踪过滤虚警目标,并通过样本置信度作进一步验证自动标注样本,最后通过在线集成学习方法更新级联分类器。该方法通过在线调整级联分类器,提高分类器对目标环境变化的适应能力,在大量视频序列上进行实验验证,并与现有在线集成学习方法进行比较,结果表明,通过该方法训练得到的检测器不但能够很好地应对目标特征的变化,也能在出现目标遮挡及背景干扰下稳定地检测出目标,具有较好的适应性及鲁棒性。
針對視頻目標檢測問題,提齣一種新的在線集成學習方法。該方法把目標檢測看成兩類分類問題,首先用少量已標註樣本離線訓練一箇初始集成分類器,然後在檢測目標的同時通過跟蹤過濾虛警目標,併通過樣本置信度作進一步驗證自動標註樣本,最後通過在線集成學習方法更新級聯分類器。該方法通過在線調整級聯分類器,提高分類器對目標環境變化的適應能力,在大量視頻序列上進行實驗驗證,併與現有在線集成學習方法進行比較,結果錶明,通過該方法訓練得到的檢測器不但能夠很好地應對目標特徵的變化,也能在齣現目標遮擋及揹景榦擾下穩定地檢測齣目標,具有較好的適應性及魯棒性。
침대시빈목표검측문제,제출일충신적재선집성학습방법。해방법파목표검측간성량류분류문제,수선용소량이표주양본리선훈련일개초시집성분류기,연후재검측목표적동시통과근종과려허경목표,병통과양본치신도작진일보험증자동표주양본,최후통과재선집성학습방법경신급련분류기。해방법통과재선조정급련분류기,제고분류기대목표배경변화적괄응능력,재대량시빈서렬상진행실험험증,병여현유재선집성학습방법진행비교,결과표명,통과해방법훈련득도적검측기불단능구흔호지응대목표특정적변화,야능재출현목표차당급배경간우하은정지검측출목표,구유교호적괄응성급로봉성。
A new online ensemble learning method is proposed for object detection in video. In this method, object detec-tion is considered as two-class classification problem. Firstly, an off-line primed ensemble classifier should be trained with a few labeled samples, and then the false alarm targets will be filtered by tracking while detecting the objects, at the same time, the automatically labeled samples will be further validated by the sample confidence, finally the cascade classi-fier can be updated by the online ensemble learning algorithm. The adaptability of the proposed method is improved by online adjusting the cascade classifier. Based on the detection results of video sequences, comparing with existing online ensemble learning methods, the detector trained by the proposed approach is adaptive and robust. It can adapt to features changes of the objects, detect objects in partial occlusion or cluttered background.