计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2014年
5期
165-168,194
,共5页
贾阳%王慧琴%胡燕%党勃
賈暘%王慧琴%鬍燕%黨勃
가양%왕혜금%호연%당발
火焰识别%改进层次聚类%支持向量机%数据采样
火燄識彆%改進層次聚類%支持嚮量機%數據採樣
화염식별%개진층차취류%지지향량궤%수거채양
flame detection%improved hierarchical cluster%Support Vector Machines(SVM)%data sampling
为了提高大空间建筑内实时监控的火灾检出率,提出基于改进分层聚类和支持向量机(SVM)的火灾识别算法。首先建立火焰颜色模型,用像素运动累积法获取疑似目标,借助改进层次聚类法对其进行合并,形成少量疑似区域。然后提取疑似区域相邻帧间相关性、面积变化率、质心偏移距离、红绿分量比、平均亮度这五个特征量。最后将特征输入到SVM进行二分类,判断是否有火。实验结果表明该算法提高了聚类算法在实际应用中的效率,克服了已有火灾识别算法过分依赖阈值的局限性,适用于室内大空间基于视频监控的火灾探测。
為瞭提高大空間建築內實時鑑控的火災檢齣率,提齣基于改進分層聚類和支持嚮量機(SVM)的火災識彆算法。首先建立火燄顏色模型,用像素運動纍積法穫取疑似目標,藉助改進層次聚類法對其進行閤併,形成少量疑似區域。然後提取疑似區域相鄰幀間相關性、麵積變化率、質心偏移距離、紅綠分量比、平均亮度這五箇特徵量。最後將特徵輸入到SVM進行二分類,判斷是否有火。實驗結果錶明該算法提高瞭聚類算法在實際應用中的效率,剋服瞭已有火災識彆算法過分依賴閾值的跼限性,適用于室內大空間基于視頻鑑控的火災探測。
위료제고대공간건축내실시감공적화재검출솔,제출기우개진분층취류화지지향량궤(SVM)적화재식별산법。수선건립화염안색모형,용상소운동루적법획취의사목표,차조개진층차취류법대기진행합병,형성소량의사구역。연후제취의사구역상린정간상관성、면적변화솔、질심편이거리、홍록분량비、평균량도저오개특정량。최후장특정수입도SVM진행이분류,판단시부유화。실험결과표명해산법제고료취류산법재실제응용중적효솔,극복료이유화재식별산법과분의뢰역치적국한성,괄용우실내대공간기우시빈감공적화재탐측。
In order to improve the fire detection rate based on video monitoring in spacious buildings, a fire detecting algorithm based on improved hierarchical cluster and Support Vector Machines(SVM)is proposed. Firstly suspected tar-gets are detected with pixel motion accumulating method after color detection with a proper color model and the targets number is reduced with an improved hierarchical cluster method. Then the features, inter-frame correlation, area rate, cen-troid offset, average brightness, proportion of green and red are extracted. Finally the features are entered into the SVM to make a decision. The experimental results show that the cluster efficiency is improved, the limitation of threshold depen-dence is overcome, and it is suitable for image fire detection in spacious buildings.