铁道学报
鐵道學報
철도학보
2014年
5期
1-7
,共7页
城市轨道交通%乘务计划%乘务任务划分%列生成%拉格朗日松弛
城市軌道交通%乘務計劃%乘務任務劃分%列生成%拉格朗日鬆弛
성시궤도교통%승무계화%승무임무화분%렬생성%랍격랑일송이
urban rail transit%crew schedule%crew pairing problem%column generation%Lagrange-relaxation
针对我国城市轨道交通(以下简称城轨)乘务计划编制效率较低的现状,结合城轨乘务劳动作业规定,建立城轨乘务任务划分的RTSCP模型。提出基于列生成思想的乘务任务划分优化算法(CGLR算法),采用该思想获取小规模较优乘务任务子集合,降低任务划分问题的求解复杂度;采用以最优拉格朗日乘子为启发信息的LR_Heuristic算法取代单纯形算法求解 RTSCP松弛问题,提高算法效率;结合获取的拉格朗日乘子,引入随机列修补技术获取 RTSCP问题的可行解,提高解质量。最后以某地铁线路为背景进行验证。结果表明,模型及算法能有效求解乘务任务划分问题并获得较优的划分方案。
針對我國城市軌道交通(以下簡稱城軌)乘務計劃編製效率較低的現狀,結閤城軌乘務勞動作業規定,建立城軌乘務任務劃分的RTSCP模型。提齣基于列生成思想的乘務任務劃分優化算法(CGLR算法),採用該思想穫取小規模較優乘務任務子集閤,降低任務劃分問題的求解複雜度;採用以最優拉格朗日乘子為啟髮信息的LR_Heuristic算法取代單純形算法求解 RTSCP鬆弛問題,提高算法效率;結閤穫取的拉格朗日乘子,引入隨機列脩補技術穫取 RTSCP問題的可行解,提高解質量。最後以某地鐵線路為揹景進行驗證。結果錶明,模型及算法能有效求解乘務任務劃分問題併穫得較優的劃分方案。
침대아국성시궤도교통(이하간칭성궤)승무계화편제효솔교저적현상,결합성궤승무노동작업규정,건립성궤승무임무화분적RTSCP모형。제출기우렬생성사상적승무임무화분우화산법(CGLR산법),채용해사상획취소규모교우승무임무자집합,강저임무화분문제적구해복잡도;채용이최우랍격랑일승자위계발신식적LR_Heuristic산법취대단순형산법구해 RTSCP송이문제,제고산법효솔;결합획취적랍격랑일승자,인입수궤렬수보기술획취 RTSCP문제적가행해,제고해질량。최후이모지철선로위배경진행험증。결과표명,모형급산법능유효구해승무임무화분문제병획득교우적화분방안。
In view of the low efficiency of crew scheduling in urban rail traffic in our country and in accordance with the current urban rail transit crew operation rules & regulations,the urban rail transit set covering prob-lem (RTSCP)model was established.On the basis of the idea of column-generation,the column generation and Lagrange-relaxation (CGLR)algorithm was put forward,by which a smaller better-solved sub-set of crew tasks was generated and the complexity of calculation was reduced.In order to enhance the efficiency of solving RTSCP relaxation problems,the LR-Heuristic algorithm using the optimal Lagrange Multiplier as the heuristic information was adopted to replace the generally-used simplex algorithm.With the acquired Lagrange Multipli-er,the stochastic column fixing method was introduced to obtain feasible improved solutions to RTSCP prob-lems.Case study of a certain URT line was made.The results show that the model and algorithm are effective to solve crew pairing problems and to formulate good set covering schemes.