电子科技大学学报
電子科技大學學報
전자과기대학학보
JOURNAL OF UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA
2014年
1期
131-136
,共6页
顺序回归%野点%分段多项式%支持向量机%截断误差
順序迴歸%野點%分段多項式%支持嚮量機%截斷誤差
순서회귀%야점%분단다항식%지지향량궤%절단오차
ordinal regression%outlier%piecewise polynomial%support vector machine%truncated loss
支持向量顺序回归算法已成功应用于解决顺序回归问题,但其易受训练样本中野点的干扰。为此,提出一种截断误差的光滑型支持向量顺序回归(TLS-SVOR)算法。学习顺序回归模型时,将错划样本形成的误差s限制在范围u内。TLS-SVOR首先用包含参数u的分段多项式近似s;再引入光滑型支持向量机分类算法的思路,将优化目标转变为二次连续可微的无约束问题,从而由牛顿法直接求得唯一的决策超平面。采用两阶段的均匀设计方法确定TLS-SVOR的最优参数。实验结果表明,相比其他顺序回归算法,TLS-SVOR在多个数据集能获得更高的精度。
支持嚮量順序迴歸算法已成功應用于解決順序迴歸問題,但其易受訓練樣本中野點的榦擾。為此,提齣一種截斷誤差的光滑型支持嚮量順序迴歸(TLS-SVOR)算法。學習順序迴歸模型時,將錯劃樣本形成的誤差s限製在範圍u內。TLS-SVOR首先用包含參數u的分段多項式近似s;再引入光滑型支持嚮量機分類算法的思路,將優化目標轉變為二次連續可微的無約束問題,從而由牛頓法直接求得唯一的決策超平麵。採用兩階段的均勻設計方法確定TLS-SVOR的最優參數。實驗結果錶明,相比其他順序迴歸算法,TLS-SVOR在多箇數據集能穫得更高的精度。
지지향량순서회귀산법이성공응용우해결순서회귀문제,단기역수훈련양본중야점적간우。위차,제출일충절단오차적광활형지지향량순서회귀(TLS-SVOR)산법。학습순서회귀모형시,장착화양본형성적오차s한제재범위u내。TLS-SVOR수선용포함삼수u적분단다항식근사s;재인입광활형지지향량궤분류산법적사로,장우화목표전변위이차련속가미적무약속문제,종이유우돈법직접구득유일적결책초평면。채용량계단적균균설계방법학정TLS-SVOR적최우삼수。실험결과표명,상비기타순서회귀산법,TLS-SVOR재다개수거집능획득경고적정도。
Support vector ordinal regression (SVOR) has been proven to be the promising algorithm for solving ordinal regression problems. However, its performance tends to be strongly affected by outliers in the training datasets. To remedy this drawback, a truncated loss smooth SVOR (TLS-SVOR) is proposed. While learning ordinal regression models, the loss s of the misranked sample is bounded between 0 and the truncated coefficient u. First, a piecewise polynomial function with parameter u is approximated to s. Then, by applying the strategy of smooth support vector machine for classification, the optimization problem is replaced with an unconstrained function which is twice continuously differentiable. The algorithm employs Newton’s method to obtain the unique discriminant hyperplane. The optimal parameter combination of TLS-SVOR is determined by a two-stage uniform designed model selection methodology. The experimental results on benchmark datasets show that TLS-SVOR has advantage in terms of accuracy over other ordinal regression approaches.