振动与冲击
振動與遲擊
진동여충격
JOURNAL OF VIBRATION AND SHOCK
2014年
1期
188-193
,共6页
饶国强%冯辅周%司爱威%谢金良
饒國彊%馮輔週%司愛威%謝金良
요국강%풍보주%사애위%사금량
排列熵%互信息%假近邻%关联积分法
排列熵%互信息%假近鄰%關聯積分法
배렬적%호신식%가근린%관련적분법
permutation entropy%mutual information%false nearest neighbor%C-C method
由于排列熵算法能够有效放大时间序列的微弱变化,且计算简单、实时性好,已在信号突变检测方面显示出良好的应用前景,但是排列熵算法中嵌入维数和延迟时间等参数的确定仍依赖于经验和尝试,该问题已成为排列熵算法走向工程应用的瓶颈问题。根据排列熵算法的原理,提出了基于重构时间序列最佳相空间来确定模型参数的方法。根据相空间重构的两种观点,介绍了延迟时间与嵌入维数独立确定和联合确定两种方法的基本理论,然后利用仿真信号和滚动轴承全寿命数据对两种算法进行了检验和对比。结果表明,模型参数的独立确定方法比联合确定方法对信号的异常检测更好。
由于排列熵算法能夠有效放大時間序列的微弱變化,且計算簡單、實時性好,已在信號突變檢測方麵顯示齣良好的應用前景,但是排列熵算法中嵌入維數和延遲時間等參數的確定仍依賴于經驗和嘗試,該問題已成為排列熵算法走嚮工程應用的瓶頸問題。根據排列熵算法的原理,提齣瞭基于重構時間序列最佳相空間來確定模型參數的方法。根據相空間重構的兩種觀點,介紹瞭延遲時間與嵌入維數獨立確定和聯閤確定兩種方法的基本理論,然後利用倣真信號和滾動軸承全壽命數據對兩種算法進行瞭檢驗和對比。結果錶明,模型參數的獨立確定方法比聯閤確定方法對信號的異常檢測更好。
유우배렬적산법능구유효방대시간서렬적미약변화,차계산간단、실시성호,이재신호돌변검측방면현시출량호적응용전경,단시배렬적산법중감입유수화연지시간등삼수적학정잉의뢰우경험화상시,해문제이성위배렬적산법주향공정응용적병경문제。근거배렬적산법적원리,제출료기우중구시간서렬최가상공간래학정모형삼수적방법。근거상공간중구적량충관점,개소료연지시간여감입유수독립학정화연합학정량충방법적기본이론,연후이용방진신호화곤동축승전수명수거대량충산법진행료검험화대비。결과표명,모형삼수적독립학정방법비연합학정방법대신호적이상검측경호。
Permutation entropy (PE)algorithm can better magnify tiny change of a time series of data.It is simple in computation and shows good quality in real-time application,so,it gives us a good application prospect in detection of the sudden change of a signal.However,the parameters in the algorithm,namely the embedding dimension and delay time are usually still determined by experience or trial.This forms a bottle-neck of PE algorithm for engineering application.According to the theory of PE algorithm,a method based on reconstructing optimal phase space of time series was put forward to determine these model parameters.Considering two points of view about phase space reconstruction, basic theories of independent and joint determination methods were introduced to determine the delay time and embedding dimension.The two determination methods were validated and compared by using simulated signals and whole life data of rolling bearings. It is concluded that the independent determination of model parameters was better than joint determination for abnormality detection.