振动与冲击
振動與遲擊
진동여충격
JOURNAL OF VIBRATION AND SHOCK
2014年
2期
158-162
,共5页
碳纳米管%变截面%纵向振动%积分方程
碳納米管%變截麵%縱嚮振動%積分方程
탄납미관%변절면%종향진동%적분방정
carbon nanotube%variable cross-section%longitudinal vibration%integral equation
研究变截面锥形纳米管/棒的纵向振动问题。由于其控制方程涉及变系数微分方程,提出适用范围广、简单精确的积分方程方法求解该问题,基于经典弹性杆理论与非局部弹性杆理论分别给出几种边界条件下的固有频率计算。对一端固定一端附加集中质量的碳纳米管的纵向振动,给出共振基频的近似简单表达式。与其它方法所得数值结果对比表明该方法有效。
研究變截麵錐形納米管/棒的縱嚮振動問題。由于其控製方程涉及變繫數微分方程,提齣適用範圍廣、簡單精確的積分方程方法求解該問題,基于經典彈性桿理論與非跼部彈性桿理論分彆給齣幾種邊界條件下的固有頻率計算。對一耑固定一耑附加集中質量的碳納米管的縱嚮振動,給齣共振基頻的近似簡單錶達式。與其它方法所得數值結果對比錶明該方法有效。
연구변절면추형납미관/봉적종향진동문제。유우기공제방정섭급변계수미분방정,제출괄용범위엄、간단정학적적분방정방법구해해문제,기우경전탄성간이론여비국부탄성간이론분별급출궤충변계조건하적고유빈솔계산。대일단고정일단부가집중질량적탄납미관적종향진동,급출공진기빈적근사간단표체식。여기타방법소득수치결과대비표명해방법유효。
The longitudinal vibration of cone-shaped nanotubes/nanorods was studied.The governing equation involved in the problem is a partial differential equation with variable coefficients.A widely applicable,simple and accurate integral equation method was presented to solve the above-mentioned problem.Based on the classical and nonlocal theories of elastic rods, the natural frequencies were determined under various boundary conditions. In particular,a simple approximate expression for the resonant fundamental frequency of clamped-free carbon nanotubes carrying a concentrated mass at the free end was derived.The comparison of our results with the previous ones using different approaches indicates that the proposed method is effective and easy to implement.