振动与冲击
振動與遲擊
진동여충격
JOURNAL OF VIBRATION AND SHOCK
2014年
2期
41-46,51
,共7页
吕海炜%李映辉%李亮%徐江
呂海煒%李映輝%李亮%徐江
려해위%리영휘%리량%서강
轴向运动%夹层梁%可压缩夹心层%横向振动特性
軸嚮運動%夾層樑%可壓縮夾心層%橫嚮振動特性
축향운동%협층량%가압축협심층%횡향진동특성
axially moving%sandwich beam%compressible core%characteristic of transverse vibration
针对传统夹层梁沿厚度方向不可压缩缺点,以上下约束层与夹心层中面横向位移为独立变量,提出全新的夹层梁理论。将夹层内任意点横向位移假设沿厚度方向变化的二次待定多项式,利用界面位移协调条件,获得以夹心层中面、上下约束层中面横向位移表示的夹心层横向位移模式,由此获得厚度方向正应变及相应剪应变。基于Hamilton原理,建立轴向运动软夹层梁横向振动控制方程组,用Galerkin法求解控制方程。研究表明,软夹层梁一阶模态为上下约束层与夹层一起作横向运动,两层之间无相对变形,与传统夹层梁理论一致;软夹层梁二阶模态为上下约束层向两相反方向运动,软夹层中面相对上下约束层不动,夹层处于上下拉伸或压缩状态;软夹层梁三阶模态为上下约束层向同一方向运动,夹心层中面向相反方向运动,夹心层上下处于不同变形状态(拉或压)。通过对振型、模态函数、自由振动响应、轴向运动速度对频率影响等因素分析表明,传统夹层梁模型为软夹层梁模型的特殊形式。
針對傳統夾層樑沿厚度方嚮不可壓縮缺點,以上下約束層與夾心層中麵橫嚮位移為獨立變量,提齣全新的夾層樑理論。將夾層內任意點橫嚮位移假設沿厚度方嚮變化的二次待定多項式,利用界麵位移協調條件,穫得以夾心層中麵、上下約束層中麵橫嚮位移錶示的夾心層橫嚮位移模式,由此穫得厚度方嚮正應變及相應剪應變。基于Hamilton原理,建立軸嚮運動軟夾層樑橫嚮振動控製方程組,用Galerkin法求解控製方程。研究錶明,軟夾層樑一階模態為上下約束層與夾層一起作橫嚮運動,兩層之間無相對變形,與傳統夾層樑理論一緻;軟夾層樑二階模態為上下約束層嚮兩相反方嚮運動,軟夾層中麵相對上下約束層不動,夾層處于上下拉伸或壓縮狀態;軟夾層樑三階模態為上下約束層嚮同一方嚮運動,夾心層中麵嚮相反方嚮運動,夾心層上下處于不同變形狀態(拉或壓)。通過對振型、模態函數、自由振動響應、軸嚮運動速度對頻率影響等因素分析錶明,傳統夾層樑模型為軟夾層樑模型的特殊形式。
침대전통협층량연후도방향불가압축결점,이상하약속층여협심층중면횡향위이위독립변량,제출전신적협층량이론。장협층내임의점횡향위이가설연후도방향변화적이차대정다항식,이용계면위이협조조건,획득이협심층중면、상하약속층중면횡향위이표시적협심층횡향위이모식,유차획득후도방향정응변급상응전응변。기우Hamilton원리,건립축향운동연협층량횡향진동공제방정조,용Galerkin법구해공제방정。연구표명,연협층량일계모태위상하약속층여협층일기작횡향운동,량층지간무상대변형,여전통협층량이론일치;연협층량이계모태위상하약속층향량상반방향운동,연협층중면상대상하약속층불동,협층처우상하랍신혹압축상태;연협층량삼계모태위상하약속층향동일방향운동,협심층중면향상반방향운동,협심층상하처우불동변형상태(랍혹압)。통과대진형、모태함수、자유진동향응、축향운동속도대빈솔영향등인소분석표명,전통협층량모형위연협층량모형적특수형식。
In consideration of the shortcoming of traditional sandwich beam theory that the sandwich beam is assumed to be incompressible in thickness direction, a new sandwich beam theory was proposed by introducing independent variables in terms of the displacements of top face sheet,middle plane of soft core and bottom face sheet.The displacement of soft core was approximated by a second order polynomial in thickness direction.Using continuity conditions along the face sheets and soft core,the transverse displacement of the soft core was solved.The normal strain and shearing strain of the soft core in thickness direction were also obtained.Based on the Hamilton principle,the governing equation of the system was established.The Galerkin truncation method was used to solve the governing equation.It is found that:the first mode of soft sandwich beam displays that the face sheets and soft core move together in transverse direction and there is no relative deformation between the face sheets and soft core,this case is consistent with the traditional sandwich beam theory;the second mode of soft sandwich beam shows that the two face sheets move in opposite direction and the middle plane of soft core does not move,so the soft core is in the state of tension or in compression;the third mode of soft sandwich beam displays that the two face sheet move in the same direction and the soft core moves in opposite direction,so the upper part and lower part of soft core are in different deformation state (tension or compression).By inspecting modal shapes,mode functions,responses of free vibration,the effect of axially moving velocity on frequencies and so on,it is concluded that the incompressible model of sandwich beam is only a special form of the soft sandwich beam model proposed in the paper.