计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2014年
2期
152-155,174
,共5页
仿射传播%时间序列%聚类分析%聚类数
倣射傳播%時間序列%聚類分析%聚類數
방사전파%시간서렬%취류분석%취류수
affinity propagation%time series%cluster analysis%number of clusters
仿射传播算法是一种快速有效的聚类方法,但其聚类结果的不稳定性影响了聚类性能。对此,提出基于近邻的仿射传播算法(AP-NN),通过仿射传播算法产生初始簇,并从中选择代表簇对非代表簇的样本进行近邻聚类。在时间序列数据集上的实验结果表明,AP-NN模型算法能够产生较好的聚类结果,适用于聚类分析。
倣射傳播算法是一種快速有效的聚類方法,但其聚類結果的不穩定性影響瞭聚類性能。對此,提齣基于近鄰的倣射傳播算法(AP-NN),通過倣射傳播算法產生初始簇,併從中選擇代錶簇對非代錶簇的樣本進行近鄰聚類。在時間序列數據集上的實驗結果錶明,AP-NN模型算法能夠產生較好的聚類結果,適用于聚類分析。
방사전파산법시일충쾌속유효적취류방법,단기취류결과적불은정성영향료취류성능。대차,제출기우근린적방사전파산법(AP-NN),통과방사전파산법산생초시족,병종중선택대표족대비대표족적양본진행근린취류。재시간서렬수거집상적실험결과표명,AP-NN모형산법능구산생교호적취류결과,괄용우취류분석。
Affinity propagation algorithm is a fast and efficient clustering method. However, the stability of clustering results affect its performance of clustering. Thus, a new method combining affinity propagation and nearest neighbor is proposed, this algorithm produces initial clusters through affinity propagation, and then the samples of non-representative cluster clusters to representatives cluster through nearest neighbor clustering. In the time series data set, experimental result shows that AP-NN algorithm can produce effective clustering results and is applied to cluster analysis.