计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2014年
2期
99-102
,共4页
刘其琛%施荣华%王国才%穆炜炜
劉其琛%施榮華%王國纔%穆煒煒
류기침%시영화%왕국재%목위위
入侵检测%粗糙集理论%支持向量机
入侵檢測%粗糙集理論%支持嚮量機
입침검측%조조집이론%지지향량궤
intrusion detection%rough sets theory%support vector machine
提出了基于粗糙集和改进最小二乘支持向量机的入侵检测算法。算法利用粗糙集理论的可辨识矩阵对样本属性进行约简,减少样本维数;利用稀疏化算法对最小二乘支持向量机进行改进,使其既具备稀疏化特性又具备快速检测的特点,提高了数据样本分类的准确性。结合算法不仅充分发挥粗糙集对数据有效约简和支持向量机准确分类的优点,同时克服了粗糙集在噪声环境中泛化性较差,支持向量机识别有效数据和冗余数据的局限性。通过实验证明,基于粗糙集和改进最小二乘支持向量机的入侵检测算法的检测精度高,误报率和漏报率较低,检测时间短,验证了算法的实效性。
提齣瞭基于粗糙集和改進最小二乘支持嚮量機的入侵檢測算法。算法利用粗糙集理論的可辨識矩陣對樣本屬性進行約簡,減少樣本維數;利用稀疏化算法對最小二乘支持嚮量機進行改進,使其既具備稀疏化特性又具備快速檢測的特點,提高瞭數據樣本分類的準確性。結閤算法不僅充分髮揮粗糙集對數據有效約簡和支持嚮量機準確分類的優點,同時剋服瞭粗糙集在譟聲環境中汎化性較差,支持嚮量機識彆有效數據和冗餘數據的跼限性。通過實驗證明,基于粗糙集和改進最小二乘支持嚮量機的入侵檢測算法的檢測精度高,誤報率和漏報率較低,檢測時間短,驗證瞭算法的實效性。
제출료기우조조집화개진최소이승지지향량궤적입침검측산법。산법이용조조집이론적가변식구진대양본속성진행약간,감소양본유수;이용희소화산법대최소이승지지향량궤진행개진,사기기구비희소화특성우구비쾌속검측적특점,제고료수거양본분류적준학성。결합산법불부충분발휘조조집대수거유효약간화지지향량궤준학분류적우점,동시극복료조조집재조성배경중범화성교차,지지향량궤식별유효수거화용여수거적국한성。통과실험증명,기우조조집화개진최소이승지지향량궤적입침검측산법적검측정도고,오보솔화루보솔교저,검측시간단,험증료산법적실효성。
This thesis proposes the intrusion detection algorithm based on rough set and the improved least squares support vector machine. The algorithm reduces sample attributes by discernible matrix using rough set theory, reduces the dimen-sion of the data samples. It improves the least squares support vector machine by a sparse algorithm, so it can improve the veracity of data sample classification with the sparse characteristic and rapid detection. On the one hand the combined algorithm has the advantages that rough set can reduce the data effectively and the support vector machine can classify accurately, and on the other hand it avoids the poor generalization while the rough set is in the noise environment and overcomes the limitations when support vector machine identifies effective data and redundant data. Experimental results show that intrusion detection algorithm based on rough set and the improved least squares support vector machine has high detection accuracy, low false positive rate and false negative rate and short detection time which show the validity of the algorithm.