现代电子技术
現代電子技術
현대전자기술
MODERN ELECTRONICS TECHNIQUE
2014年
2期
84-87
,共4页
魏晗%陈刚%李弼程%张瑞杰
魏晗%陳剛%李弼程%張瑞傑
위함%진강%리필정%장서걸
自组织竞争网络%混合特征%车辆识别%特征提取
自組織競爭網絡%混閤特徵%車輛識彆%特徵提取
자조직경쟁망락%혼합특정%차량식별%특정제취
self-organizing competitive network%mixed feature%vehicle recognition%feature extraction
为了对车辆目标进行识别,采用了一种基于自组织竞争网络的方法。该算法提取16个离散余弦变换描述子,6个独立的不变矩和3个区域描述子等25个平移、旋转、尺度放缩等变换下都不变的目标形状特征,把这些混合特征输入到设计的自组织竞争网络进行学习、聚类和分类,获得的分类精度高达96.15%,从而得出用自组织竞争网络进行混合特征识别,性能稳定,较单一特征提取识别精度更高。
為瞭對車輛目標進行識彆,採用瞭一種基于自組織競爭網絡的方法。該算法提取16箇離散餘絃變換描述子,6箇獨立的不變矩和3箇區域描述子等25箇平移、鏇轉、呎度放縮等變換下都不變的目標形狀特徵,把這些混閤特徵輸入到設計的自組織競爭網絡進行學習、聚類和分類,穫得的分類精度高達96.15%,從而得齣用自組織競爭網絡進行混閤特徵識彆,性能穩定,較單一特徵提取識彆精度更高。
위료대차량목표진행식별,채용료일충기우자조직경쟁망락적방법。해산법제취16개리산여현변환묘술자,6개독립적불변구화3개구역묘술자등25개평이、선전、척도방축등변환하도불변적목표형상특정,파저사혼합특정수입도설계적자조직경쟁망락진행학습、취류화분류,획득적분류정도고체96.15%,종이득출용자조직경쟁망락진행혼합특정식별,성능은정,교단일특정제취식별정도경고。
A vehicle recognition method based on self-organizing competitive network is proposed. 16 DCT descriptors,6 independent invariant moments and 3 region characterizations are extracted to identify vehicle targets. These features are invariant under the conditions of translation,rotation,and scale change of targets. After these mixed features were input into the self-orga-nizing competitive network for learning,clustering and classification,96.15% classification accuracy was obtained. Compared with single-feature extraction method,the self-organizing competitive network based on the mixed features is faster and has higher recognition rate.