农机化研究
農機化研究
농궤화연구
JOURNAL OF AGRICULTURAL MECHANIZATION RESEARCH
2014年
7期
57-61,66
,共6页
李俊伟%郭俊先%张学军%胡光辉%程国首
李俊偉%郭俊先%張學軍%鬍光輝%程國首
리준위%곽준선%장학군%호광휘%정국수
机器视觉%图像处理%无核白鲜葡萄%偏最小二乘回归
機器視覺%圖像處理%無覈白鮮葡萄%偏最小二乘迴歸
궤기시각%도상처리%무핵백선포도%편최소이승회귀
machine vision%imaging processing%seedless white grape%partial least-squares regression
以新疆无核白鲜葡萄为研究对象,采用机器视觉技术预测葡萄穗的质量。首先,提取 RGB 图像,做 G , B双通道分量加运算R+B ,采用高斯低通滤波法滤除图像中的噪音,采用 Gamma 变换法调整图像灰度,从而增强前景与背景的对比度。其次,采用自动阈值分割法分割图像,经数学形态学的腐蚀和开运算获得最佳二值图像,提取二值图像中目标区域的几何特征。最后,采用一元线性回归、多元线性回归和偏最小二乘回归预测葡萄穗的质量。结果表明,提取分割后的葡萄穗面积、周长、长轴及短轴长度等特征建立的偏最小二乘回归模型,其预测葡萄穗质量效果最佳,相关系数r2为96.91%。
以新疆無覈白鮮葡萄為研究對象,採用機器視覺技術預測葡萄穗的質量。首先,提取 RGB 圖像,做 G , B雙通道分量加運算R+B ,採用高斯低通濾波法濾除圖像中的譟音,採用 Gamma 變換法調整圖像灰度,從而增彊前景與揹景的對比度。其次,採用自動閾值分割法分割圖像,經數學形態學的腐蝕和開運算穫得最佳二值圖像,提取二值圖像中目標區域的幾何特徵。最後,採用一元線性迴歸、多元線性迴歸和偏最小二乘迴歸預測葡萄穗的質量。結果錶明,提取分割後的葡萄穗麵積、週長、長軸及短軸長度等特徵建立的偏最小二乘迴歸模型,其預測葡萄穗質量效果最佳,相關繫數r2為96.91%。
이신강무핵백선포도위연구대상,채용궤기시각기술예측포도수적질량。수선,제취 RGB 도상,주 G , B쌍통도분량가운산R+B ,채용고사저통려파법려제도상중적조음,채용 Gamma 변환법조정도상회도,종이증강전경여배경적대비도。기차,채용자동역치분할법분할도상,경수학형태학적부식화개운산획득최가이치도상,제취이치도상중목표구역적궤하특정。최후,채용일원선성회귀、다원선성회귀화편최소이승회귀예측포도수적질량。결과표명,제취분할후적포도수면적、주장、장축급단축장도등특정건립적편최소이승회귀모형,기예측포도수질량효과최가,상관계수r2위96.91%。
The object of this study is to forecast weight of Xinjiang Wu Hebai grape spike by using machine vision tech -nology .Extracting the RGB image , add operation R+B of G and B dual channel component , gaussian low pass filtering method for filtering noise in images and gamma transform method for adjusting the image gray level are used to enhance the visibility of the foreground and background .Furthermore ,the automatic threshold segmentation method is used to split image;The corrosion and opening function of mathematical morphology is used to get best binary image and extract the ge -ometrical characteristics of the target area in binary image .For the last , monadic linear regression , multiple linear regres-sion and partial least-squares regression are used to predict grape spike weight .Results show that partial least-squares regression model which is established by the area ,perimeter ,length of long axis and short axis of the grape spike in the segmentation images after extraction ,predicts the best weight effect of this method with correlation coefficient r2 96 .91%.