哈尔滨师范大学自然科学学报
哈爾濱師範大學自然科學學報
합이빈사범대학자연과학학보
NATURAL SCIENCES JOURNAL OF HARBIN NORMAL UNIVERSITY
2011年
5期
8-12
,共5页
非线性系统%观测器设计%线性矩阵不等式(LMI)%微分中值定理(DMVT)
非線性繫統%觀測器設計%線性矩陣不等式(LMI)%微分中值定理(DMVT)
비선성계통%관측기설계%선성구진불등식(LMI)%미분중치정리(DMVT)
Nonlinear system%Observer design%Linear matrix inequality (LMI)%Differential meanvalue theorem (DMVT)
论文主要研究为一类Lipschitz非线性系统设计全维和降维观测器.基于微分中值定理和一个重要的矩阵不等式,研究了这类非线性系统观测器存在的充分条件,并且以线性矩阵不等式的形式给出,所得结论至少是已有文献的补充.此外,获得的充分条件要比文献中这类非线性系统降维观测器的设计方法要减少保守性.同文献[1]相比,避免了解高阶线性矩阵不等式,而且线性矩阵不等式的可解性也更优于已有文献中矩阵不等式的可解性.最后,仿真算例验证了结论的有效性.
論文主要研究為一類Lipschitz非線性繫統設計全維和降維觀測器.基于微分中值定理和一箇重要的矩陣不等式,研究瞭這類非線性繫統觀測器存在的充分條件,併且以線性矩陣不等式的形式給齣,所得結論至少是已有文獻的補充.此外,穫得的充分條件要比文獻中這類非線性繫統降維觀測器的設計方法要減少保守性.同文獻[1]相比,避免瞭解高階線性矩陣不等式,而且線性矩陣不等式的可解性也更優于已有文獻中矩陣不等式的可解性.最後,倣真算例驗證瞭結論的有效性.
논문주요연구위일류Lipschitz비선성계통설계전유화강유관측기.기우미분중치정리화일개중요적구진불등식,연구료저류비선성계통관측기존재적충분조건,병차이선성구진불등식적형식급출,소득결론지소시이유문헌적보충.차외,획득적충분조건요비문헌중저류비선성계통강유관측기적설계방법요감소보수성.동문헌[1]상비,피면료해고계선성구진불등식,이차선성구진불등식적가해성야경우우이유문헌중구진불등식적가해성.최후,방진산례험증료결론적유효성.
In this paper, the full and reduced - order observer design for a class of Lipschitz nonlinear systems is investigated. Based on the differential mean value theorem (DMVT) and an important matrix inequality, sufficient conditions for the existence of the observers of the class of nonlinear systems are proposed. The proposed sufficient conditions are given in terms of linear matrix inequalities (LMIs), and they are complements of the sufficient conditions given in literature at least. In addition, a sufficient condition which is less conservative than those given in literature for reduced - order observer design of a class of nonlinear systems is obtained. By comparison with referece [ 1 ], the proposed approach avoids solving high - order LMI. The solvability of the p examples are given to illustrate the LMI is better than that of the matrix inequality given in literature. Some proposed approach