广州化工
廣州化工
엄주화공
GUANGZHOU CHEMICAL INDUSTRY AND TECHNOLOGY
2012年
18期
41-43
,共3页
取代芳烃%定量结构-活性关系%人工神经网络%发光菌
取代芳烴%定量結構-活性關繫%人工神經網絡%髮光菌
취대방경%정량결구-활성관계%인공신경망락%발광균
substituted aromatic compounds%quantitative structure -activity relationship%artificial neural network%photobacterium
采用误差反传前向人工神经网络(artificial neural network,ANN)建立了24种取代芳烃的结构与其对发光菌的急性毒性之间的定量关系模型(ANN模型)。以24种取代芳烃的量子化学参数作为输入,急性毒性作为输出,采用内外双重验证的办法分析和检验所得模型的稳定性和外部预测能力。所构建网络模型的相关系数为0.9834、交叉检验相关系数为0.9780、标准偏差为0.11、残差绝对值≤0.33,应用于外部预测集,外部预测集相关系数为0.9955;而多元线性回归(multiple linear regression,MLR)法模型的相关系数为0.9786、标准偏差为0.12、残差绝对值≤0.36,外部预测集相关系数为0.9904。结果表明,ANN模型获得了比MLR模型更好的拟合效果。
採用誤差反傳前嚮人工神經網絡(artificial neural network,ANN)建立瞭24種取代芳烴的結構與其對髮光菌的急性毒性之間的定量關繫模型(ANN模型)。以24種取代芳烴的量子化學參數作為輸入,急性毒性作為輸齣,採用內外雙重驗證的辦法分析和檢驗所得模型的穩定性和外部預測能力。所構建網絡模型的相關繫數為0.9834、交扠檢驗相關繫數為0.9780、標準偏差為0.11、殘差絕對值≤0.33,應用于外部預測集,外部預測集相關繫數為0.9955;而多元線性迴歸(multiple linear regression,MLR)法模型的相關繫數為0.9786、標準偏差為0.12、殘差絕對值≤0.36,外部預測集相關繫數為0.9904。結果錶明,ANN模型穫得瞭比MLR模型更好的擬閤效果。
채용오차반전전향인공신경망락(artificial neural network,ANN)건립료24충취대방경적결구여기대발광균적급성독성지간적정량관계모형(ANN모형)。이24충취대방경적양자화학삼수작위수입,급성독성작위수출,채용내외쌍중험증적판법분석화검험소득모형적은정성화외부예측능력。소구건망락모형적상관계수위0.9834、교차검험상관계수위0.9780、표준편차위0.11、잔차절대치≤0.33,응용우외부예측집,외부예측집상관계수위0.9955;이다원선성회귀(multiple linear regression,MLR)법모형적상관계수위0.9786、표준편차위0.12、잔차절대치≤0.36,외부예측집상관계수위0.9904。결과표명,ANN모형획득료비MLR모형경호적의합효과。
The systematic study of the quantitative structure - activity relationship (QSAR) on 24 substituted aro- matic compounds was performed by the artificial neural network based on the back propagation algorithm. For the artificial neural network method, when using the quantum chemical parameters about structure as the inputs of the neural network and the acute toxicities as the outputs of the neural network, the correlation coefficient was 0. 9834, the leave one out cross - validation regression coefficient was 0. 9780, the standard error was 0. 11, the correlation coefficient of the test set was 0. 9955 and the absolute values of residual were less than 0. 33. In order to make contrast, the QSAR model was set up by multiple linear regressions (MLR) method. For the model built by MLR, the correlation coefficient was O. 9786, the standard error was 0. 12, the absolute values of residual were less than 0.36 and the correlation coefficient of the test set was 0. 9904. The results showed that the performance of neural network method was better than that of MLR method.