湖北民族学院学报:自然科学版
湖北民族學院學報:自然科學版
호북민족학원학보:자연과학판
Journal of Hubei Institute for Nationalities(Natural Sciences)
2012年
3期
254-255,270
,共3页
粒子群算法%BP神经网络%个体极值%群体极值
粒子群算法%BP神經網絡%箇體極值%群體極值
입자군산법%BP신경망락%개체겁치%군체겁치
particle swarm algorithm%BP neural network%individual extremum%group extremum
现实生活中绝大数系统都是非线性的,BP神经网络通过训练能否达到局部最优值、能否收敛以及训练的时间长短与初始值和阈值的选取关系密切.为此采用了具有动态惯性权重的粒子群算法对BP神经网络初始值进行优化.实验表明具有动态惯性权重的粒子群算法优化BP神经网络预测误差很小,能够跳出局部极小值,得到更优的结果.
現實生活中絕大數繫統都是非線性的,BP神經網絡通過訓練能否達到跼部最優值、能否收斂以及訓練的時間長短與初始值和閾值的選取關繫密切.為此採用瞭具有動態慣性權重的粒子群算法對BP神經網絡初始值進行優化.實驗錶明具有動態慣性權重的粒子群算法優化BP神經網絡預測誤差很小,能夠跳齣跼部極小值,得到更優的結果.
현실생활중절대수계통도시비선성적,BP신경망락통과훈련능부체도국부최우치、능부수렴이급훈련적시간장단여초시치화역치적선취관계밀절.위차채용료구유동태관성권중적입자군산법대BP신경망락초시치진행우화.실험표명구유동태관성권중적입자군산법우화BP신경망락예측오차흔소,능구도출국부겁소치,득도경우적결과.
Most systemms are nonlinear in real life.Whether BP neural network could meet the local optimal value through training,whether it is comvergent and how long the training lasts are closely related to the initial value and the threshold value selected.This paper use a particle swarm algorithm with dynamic inertia weight network to optimize the initial value of the BP neural network.The experiment shows that the prediction error is very small when the particle swarm algorithm is used to optimize the BP neural network. Such an algorithm can jump out of local minimum value and get better results.