兵工学报:英文版
兵工學報:英文版
병공학보:영문판
Journal of China Ordnance
2012年
3期
139-145
,共7页
hydromechanics%vortex-induced vibration%shear flow%flow control%electro-magnetic control
The flow of the weak electrolyte solution can be controlled by Lorentz force achieved with the suitable magnetic and electric fields, and it has the advantages of vortex street suppression, drag reduction, lift enhancement and oscillatory suppression for the flow over a bluff body. The electro-magnetic control of vortex-induced vibration (VIV) of a circular cyl- inder in the shear flow was investigated numerically in the exponential-polar coordinates attached on the moving cylinder for Re = 150. With the effect of background vorticity, the vortex street of VIV cylinder was composed of two parallel rows with an opposite sign of the vortices which inclines toward the lower side and the strength of upper vortex is larger than that of lower vortex. The lift force vibrated periodically with the effect of vortex shedding and the mean value was negative due to the background vorticity. The Lorentz force for controlling the VIV cylinder was classified into the field Lorentz force and the wall Lorentz force. The field Lorentz force suppresses the lift oscillation, and in turn, suppresses the VIV, whereas the wall Loreutz force increases the lift.