太原科技大学学报
太原科技大學學報
태원과기대학학보
JOURNAL OF TAIYUAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
2012年
4期
321-324
,共4页
Hamilton连通图%Cartesian积图%边偶泛圈%边泛圈性
Hamilton連通圖%Cartesian積圖%邊偶汎圈%邊汎圈性
Hamilton련통도%Cartesian적도%변우범권%변범권성
Hamilton connected graphs%Cartesian product graphs%edge-bipancyclicity%edge-pancyclicity
网络中子图的可嵌入性是度量网络优劣的一个重要性能。圈作为网络拓扑中一类重要的子图,其可嵌入性可以通过泛圈性来度量。Cartesian积图是互联网络拓扑结构中一类非常重要的图类。设G是长为k1和k2的圈的Cartesian积图。利用Cartesian积图的顶点和边的传递性,证明了当k1≥3,k2≥3,G是边偶泛圈的;当k1,k2均为奇数时,G是(k1+k22)-边泛圈的。
網絡中子圖的可嵌入性是度量網絡優劣的一箇重要性能。圈作為網絡拓撲中一類重要的子圖,其可嵌入性可以通過汎圈性來度量。Cartesian積圖是互聯網絡拓撲結構中一類非常重要的圖類。設G是長為k1和k2的圈的Cartesian積圖。利用Cartesian積圖的頂點和邊的傳遞性,證明瞭噹k1≥3,k2≥3,G是邊偶汎圈的;噹k1,k2均為奇數時,G是(k1+k22)-邊汎圈的。
망락중자도적가감입성시도량망락우렬적일개중요성능。권작위망락탁복중일류중요적자도,기가감입성가이통과범권성래도량。Cartesian적도시호련망락탁복결구중일류비상중요적도류。설G시장위k1화k2적권적Cartesian적도。이용Cartesian적도적정점화변적전체성,증명료당k1≥3,k2≥3,G시변우범권적;당k1,k2균위기수시,G시(k1+k22)-변범권적。
The subgraph embedding is an important issue in evaluating an inter-connection network. As an important subgraph,how well the cycles can be embedded in an interconnection network can be measured by the pancyclicity of the interconnection network. The Cartesian product graph is an important class of topological structures of inter- connection networks. Let the Cartesian product graph G = Ck1 x Ck2. Using the vertex-transitivity and edge- transi- tivity weshowed that G is edge-bipancyelic if kl ≥ 3 and k2 ≥3 . Moreover, G is (k1+k2/2) -edge-pancyclic ifkland k2 are odd, where k1 ≥ 3 and k2 ≥ 3.