广州大学学报:自然科学版
廣州大學學報:自然科學版
엄주대학학보:자연과학판
Journal og Guangzhou University:Natural Science Edition
2012年
4期
5-8
,共4页
离散传染病模型%基本再生数%稳定性
離散傳染病模型%基本再生數%穩定性
리산전염병모형%기본재생수%은정성
discrete epidemic model%basic reproduction number%stability
建立了一类新的离散SIS传染病模型,该模型中人口总数依赖于出生函数而随时间变化.针对不同的出生函数,得到了该模型的基本再生数R,证明了当R≤1时疾病最终消失,无疾病平衡点是全局稳定的.当R0〉1时疾病能够继续存在,成为一种地方性疾病,并且该平衡点是稳定的.
建立瞭一類新的離散SIS傳染病模型,該模型中人口總數依賴于齣生函數而隨時間變化.針對不同的齣生函數,得到瞭該模型的基本再生數R,證明瞭噹R≤1時疾病最終消失,無疾病平衡點是全跼穩定的.噹R0〉1時疾病能夠繼續存在,成為一種地方性疾病,併且該平衡點是穩定的.
건립료일류신적리산SIS전염병모형,해모형중인구총수의뢰우출생함수이수시간변화.침대불동적출생함수,득도료해모형적기본재생수R,증명료당R≤1시질병최종소실,무질병평형점시전국은정적.당R0〉1시질병능구계속존재,성위일충지방성질병,병차해평형점시은정적.
In this paper, a new discrete SIS model is established. In this model, whole population varies with time according to birth functions. For different birth functions, basic reproduction numbers are found. It is proved that when the basic reproduction number R ≤ 1, the epidemic disease dies out eventually and disease-free equilibrium is globally asymptotically stable ; while R 〉 1 implies that the epidemic disease cannot to be eliminated, it will become endemic disease. Furthermore, the endemic equilibrium is stable.