贵州师范大学学报:自然科学版
貴州師範大學學報:自然科學版
귀주사범대학학보:자연과학판
Journal of Guizhou Normal University(Natural Sciences)
2012年
5期
94-97
,共4页
曹安照%高来鑫%徐荣
曹安照%高來鑫%徐榮
조안조%고래흠%서영
粗糙集-神经网络(RS-ANN)%知识型员工离职模型%预警
粗糙集-神經網絡(RS-ANN)%知識型員工離職模型%預警
조조집-신경망락(RS-ANN)%지식형원공리직모형%예경
rough set-neural network (RS-ANN)%the model of knowledge-based employee turnover%early-warning
以相关文献作为研究基础,确定知识型员工离职的相关因素,利用粗糙集理论对知识的约简能力及神经网络的分类能力,构建粗糙集-神经网络(RS—ANN)员工离职预警模型;并将该模型应用于员工离职预警数据进行实例验证,该模型预警速度快,离职预警正确率高。
以相關文獻作為研究基礎,確定知識型員工離職的相關因素,利用粗糙集理論對知識的約簡能力及神經網絡的分類能力,構建粗糙集-神經網絡(RS—ANN)員工離職預警模型;併將該模型應用于員工離職預警數據進行實例驗證,該模型預警速度快,離職預警正確率高。
이상관문헌작위연구기출,학정지식형원공리직적상관인소,이용조조집이론대지식적약간능력급신경망락적분류능력,구건조조집-신경망락(RS—ANN)원공리직예경모형;병장해모형응용우원공리직예경수거진행실례험증,해모형예경속도쾌,리직예경정학솔고。
As the basic study to related documents, we found the relevant factors of knowledge-based employee turnover. Considering the reduction ability of rough set theory and the classification ability of artificial neural network, a rough set-neural network (RS-ANN) employee turnover early-warning model is constructed. Then the model is applied to employee turnover early-warning data for instance validation. The results verify that the model has fast warning speed and high accuracy.