电子信息对抗技术
電子信息對抗技術
전자신식대항기술
ELECTRONIC INFORMATION WARFARE TECHNOLOGY
2012年
5期
27-33
,共7页
联合平移不变子空间%离散化%参数估计%压缩采样%稀疏贝叶斯学习
聯閤平移不變子空間%離散化%參數估計%壓縮採樣%稀疏貝葉斯學習
연합평이불변자공간%리산화%삼수고계%압축채양%희소패협사학습
Key words: union of shifl-invariant subspaces%discretization%parameter estimation%compressed sam-piing%sparse Bayesian learning
针对有效核函数(active kernel function)未知的联合平移不变子空间(Union of Shift-InvariantSubspaces,USI),提出了一种压缩采样模型,基于稀疏重构理论,该采样模型能够有效降低信号的采样率。首先建立一个多脉冲雷达回波信号模型,在信号的延时-多普勒平面上对延时轴离散化,将回波信号表示为USI信号;然后在根据构建的压缩采样模型降低信号采样率的同时,利用稀疏贝叶斯学习和ESPRIT算法由信号样本值估计出雷达回波信号的延时、多普勒频移和反射系数等参数;最后仿真验证了研究结论的有效性。
針對有效覈函數(active kernel function)未知的聯閤平移不變子空間(Union of Shift-InvariantSubspaces,USI),提齣瞭一種壓縮採樣模型,基于稀疏重構理論,該採樣模型能夠有效降低信號的採樣率。首先建立一箇多脈遲雷達迴波信號模型,在信號的延時-多普勒平麵上對延時軸離散化,將迴波信號錶示為USI信號;然後在根據構建的壓縮採樣模型降低信號採樣率的同時,利用稀疏貝葉斯學習和ESPRIT算法由信號樣本值估計齣雷達迴波信號的延時、多普勒頻移和反射繫數等參數;最後倣真驗證瞭研究結論的有效性。
침대유효핵함수(active kernel function)미지적연합평이불변자공간(Union of Shift-InvariantSubspaces,USI),제출료일충압축채양모형,기우희소중구이론,해채양모형능구유효강저신호적채양솔。수선건립일개다맥충뢰체회파신호모형,재신호적연시-다보륵평면상대연시축리산화,장회파신호표시위USI신호;연후재근거구건적압축채양모형강저신호채양솔적동시,이용희소패협사학습화ESPRIT산법유신호양본치고계출뢰체회파신호적연시、다보륵빈이화반사계수등삼수;최후방진험증료연구결론적유효성。
For the signals in union of shift-invariant subspaces (USI) when the active kernel functions are unknown, a concrete compressed sampling scheme is proposed which can reduce the sampling rate effectively based on the sparse reconstruction. A signal model of multiple-pulse radar echo signal is estabilished firstly, the echo signal corresponds to a signal in union of shift-invariant subspaces by discretizing the delay of delay-doppler space. Furthermore, the parameters of echo signal are estimat- ed from the samples by sparse Bayesian learning and ESPRIT algorithm. Finally, simulation are car- ried out to prove the validity of the research result.