信息安全与技术
信息安全與技術
신식안전여기술
INFORMATION SECURITY AND TECHNOLOGY
2012年
9期
27-28,51
,共3页
RSA%改进%公钥算法
RSA%改進%公鑰算法
RSA%개진%공약산법
RSA%Improvement%Public-Key Cryptosystem
众所周知,RSA是唯一一个能够同时实现数据加密、数字签名、秘钥交换的算法。其过程可简述为选取两个大的质数乘积n=p’q(非公开),然后选择一个和牵(n)互质的整数e(其中1〈e〈(b(n)),求其关于欧拉函数巾(n)=(p-1)(q-1)=φ(P)*φ(q)的逆元d,进而得到公钥对与私钥对(e,n)和(d,n)。假如n是三个或更多素数的乘积会怎样?该算法是否依然成立?本文旨在探讨n取更多素数乘积时所得到的结论以及根据这些结论所能对RSA作出的改进。
衆所週知,RSA是唯一一箇能夠同時實現數據加密、數字籤名、祕鑰交換的算法。其過程可簡述為選取兩箇大的質數乘積n=p’q(非公開),然後選擇一箇和牽(n)互質的整數e(其中1〈e〈(b(n)),求其關于歐拉函數巾(n)=(p-1)(q-1)=φ(P)*φ(q)的逆元d,進而得到公鑰對與私鑰對(e,n)和(d,n)。假如n是三箇或更多素數的乘積會怎樣?該算法是否依然成立?本文旨在探討n取更多素數乘積時所得到的結論以及根據這些結論所能對RSA作齣的改進。
음소주지,RSA시유일일개능구동시실현수거가밀、수자첨명、비약교환적산법。기과정가간술위선취량개대적질수승적n=p’q(비공개),연후선택일개화견(n)호질적정수e(기중1〈e〈(b(n)),구기관우구랍함수건(n)=(p-1)(q-1)=φ(P)*φ(q)적역원d,진이득도공약대여사약대(e,n)화(d,n)。가여n시삼개혹경다소수적승적회즘양?해산법시부의연성립?본문지재탐토n취경다소수승적시소득도적결론이급근거저사결론소능대RSA작출적개진。
As we all know, RSA is the only Algorithm that can be used in Data Encryption, Digital Signature and Key Distribution collectively. The process of RSA can be briefly summarized into 3 stages. First, select an integer n that is the result of 2 prime numbers' product (n=p*q, private). Then, select an integer e that is relatively prime to ~ (n) (l〈e〈~ (n), ,~ (n) is the Euler's totient function). Next, calculate d that is e's multiplicative inverse about ~(n). Thus, we get the public key {e, n} and private key {d, n}. Consider if n is the result of the product of 3 or more integers. Is the Algorithm still work? In this essay, I am attempt to discuss some conclusions under the condition that n is the result of the product of more integers and suggest some possible improvements based on those conclusions.