物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2014年
6期
1017-1026
,共10页
李艳荣%裴毅强%秦静%张淼
李豔榮%裴毅彊%秦靜%張淼
리염영%배의강%진정%장묘
汽油参比燃料%甲苯%基础燃料%碳烟前驱物%多环芳香烃%化学动力学机理
汽油參比燃料%甲苯%基礎燃料%碳煙前驅物%多環芳香烴%化學動力學機理
기유삼비연료%갑분%기출연료%탄연전구물%다배방향경%화학동역학궤리
Gasoline surrogate fuels%Toluene%Primary reference fuel%Soot precursor%Polycyclic aromatic hydrocarbons%Chemical kinetic mechanism
构造了一个包括287种组分和1569个反应的汽油参比燃料TRF (toluene reference fuel)燃烧过程中多环芳香烃(PAHs)生成机理的详细化学反应动力学模型,引入四种PAH生长路径将多环芳香烃的生成机理发展到芘A4(C20H12)水平,并通过对PAH产率的分析,指出乙炔(C2H2)、丙炔(C3H3)、乙烯基乙炔(C4H4)以及含有奇数碳原子的环戊二烯自由基(C5H5)和茚基(C9H7)等物质对PAHs生成和生长起到重要作用。该机理可以较准确计算基础燃料(PRF)和TRF火焰的着火延迟期、燃烧火焰中小分子(PAH前驱体C2H2、C3H4等)和PAHs的物质浓度。通过与实验数据的比较表明,该机理在不同温度、压力、化学计量比下具有较好的性能。由此分析,该机理对碳烟前驱物PAHs的预测性能是可靠的。
構造瞭一箇包括287種組分和1569箇反應的汽油參比燃料TRF (toluene reference fuel)燃燒過程中多環芳香烴(PAHs)生成機理的詳細化學反應動力學模型,引入四種PAH生長路徑將多環芳香烴的生成機理髮展到芘A4(C20H12)水平,併通過對PAH產率的分析,指齣乙炔(C2H2)、丙炔(C3H3)、乙烯基乙炔(C4H4)以及含有奇數碳原子的環戊二烯自由基(C5H5)和茚基(C9H7)等物質對PAHs生成和生長起到重要作用。該機理可以較準確計算基礎燃料(PRF)和TRF火燄的著火延遲期、燃燒火燄中小分子(PAH前驅體C2H2、C3H4等)和PAHs的物質濃度。通過與實驗數據的比較錶明,該機理在不同溫度、壓力、化學計量比下具有較好的性能。由此分析,該機理對碳煙前驅物PAHs的預測性能是可靠的。
구조료일개포괄287충조분화1569개반응적기유삼비연료TRF (toluene reference fuel)연소과정중다배방향경(PAHs)생성궤리적상세화학반응동역학모형,인입사충PAH생장로경장다배방향경적생성궤리발전도비A4(C20H12)수평,병통과대PAH산솔적분석,지출을결(C2H2)、병결(C3H3)、을희기을결(C4H4)이급함유기수탄원자적배무이희자유기(C5H5)화인기(C9H7)등물질대PAHs생성화생장기도중요작용。해궤리가이교준학계산기출연료(PRF)화TRF화염적착화연지기、연소화염중소분자(PAH전구체C2H2、C3H4등)화PAHs적물질농도。통과여실험수거적비교표명,해궤리재불동온도、압력、화학계량비하구유교호적성능。유차분석,해궤리대탄연전구물PAHs적예측성능시가고적。
A detailed reaction mechanism consisting of 287 species and 1569 reactions for gasoline surrogate fuels TRF (toluene reference fuels) with particular emphasis on the development of an accurate model for the formation of large polycyclic aromatic hydrocarbons (PAHs) has been researched and developed in this study. Four different types of reaction pathway for the growth of the PAHs were added to the new mechanism with the largest chemical species of this mechanism being pyrene (C20H12). Species, such as acetylene (C2H2), propargyl (C3H3), vinylacetylene (C4H4), and hydrocarbons with odd number of carbon atoms, such as cyclopentadienyl (C5H5) and indenyl (C9H7), played an important role in the formation and growth of PAH molecules, based on the analysis of PAH rate of production. This mechanism could be used to predict the ignition delay timing, mole fractions of several smal important species, such as the PAH precursors C2H2 and C3H4, and mole fractions of the PAHs in the flames of the primary reference fuels (PRF) and TRF. Comparisons between the calculated and experimental results indicated the good predictability of this mechanism over a wide range of temperatures, pressures, and equivalence ratios. Results show that this TRF mechanism can be used to reliably predict the soot precursor PAHs.