计算机应用研究
計算機應用研究
계산궤응용연구
APPLICATION RESEARCH OF COMPUTERS
2013年
3期
853-855,860
,共4页
梁霄%孟相如%陈铎龙%庄绪春
樑霄%孟相如%陳鐸龍%莊緒春
량소%맹상여%진탁룡%장서춘
网络可生存性%综合评估%支持向量数据描述%二进制粒子群算法%特征选择%相对距离
網絡可生存性%綜閤評估%支持嚮量數據描述%二進製粒子群算法%特徵選擇%相對距離
망락가생존성%종합평고%지지향량수거묘술%이진제입자군산법%특정선택%상대거리
network survivability%comprehensive evaluation%support vector data description%discrete binary particle swarm optimization%feature selection%relative distance
针对网络可生存性综合评估方法中指标权重难以确定的问题, 提出了基于支持向量数据描述(SVDD)的网络可生存性综合评估方法。该方法分析了SVDD的几何意义, 采用二进制粒子群(BPSO)算法对建立的评估特征指标集进行特征选择, 将所得的特征指标集视为整体来建立SVDD分类模型, 并以测试样本点与模型的相对距离为依据评估系统的可生存性, 避免了综合评估中指标权重确定的主观性。最后通过网络实例验证了评估模型的有效性。
針對網絡可生存性綜閤評估方法中指標權重難以確定的問題, 提齣瞭基于支持嚮量數據描述(SVDD)的網絡可生存性綜閤評估方法。該方法分析瞭SVDD的幾何意義, 採用二進製粒子群(BPSO)算法對建立的評估特徵指標集進行特徵選擇, 將所得的特徵指標集視為整體來建立SVDD分類模型, 併以測試樣本點與模型的相對距離為依據評估繫統的可生存性, 避免瞭綜閤評估中指標權重確定的主觀性。最後通過網絡實例驗證瞭評估模型的有效性。
침대망락가생존성종합평고방법중지표권중난이학정적문제, 제출료기우지지향량수거묘술(SVDD)적망락가생존성종합평고방법。해방법분석료SVDD적궤하의의, 채용이진제입자군(BPSO)산법대건립적평고특정지표집진행특정선택, 장소득적특정지표집시위정체래건립SVDD분류모형, 병이측시양본점여모형적상대거리위의거평고계통적가생존성, 피면료종합평고중지표권중학정적주관성。최후통과망락실례험증료평고모형적유효성。
Aimed at the problem of indexes weighting ensuring in comprehensive evaluation, this paper proposed a comprehensive evaluation for network survivability based on support vector data description (SVDD). It analyzed the meaning of SVDD firstly, and constructed the survivability feature index set from the angle of key attributes and characteristics. Then the index set was selected and optimized by using the binary particle swarm optimization (BPSO) algorithm. This method constructed the SVDD classify model by regarding the optimum feature subset as a integrity. And it introduced the relative distance in kernel space between diagnostic samples and distributed spheres as a basis to evaluate the system survivability. It avoided the subjectivity of indexes weighting ensuring in comprehensive evaluation by using this method. Finally, it provided a network example to verify the validity of the evaluation method.