计算机应用研究
計算機應用研究
계산궤응용연구
APPLICATION RESEARCH OF COMPUTERS
2013年
3期
829-834
,共6页
布尔函数系统%混合极性对偶Reed-Muller%系数矩阵%极性转换%精确化简%格雷码%穷举策略
佈爾函數繫統%混閤極性對偶Reed-Muller%繫數矩陣%極性轉換%精確化簡%格雷碼%窮舉策略
포이함수계통%혼합겁성대우Reed-Muller%계수구진%겁성전환%정학화간%격뢰마%궁거책략
Boolean function system%mixed-polarity dual Reed-Muller(MPDRM)%coefficient matrix%polarity conversion%exact minimization%Gray code%exhaustive strategy
针对多输出布尔函数系统混合极性对偶Reed-Muller展开(MPDRM)的极性转换问题, 提出了一种基于系数矩阵的极性转换方法。该方法通过分析使用转换矩阵进行极性转换时所需的矩阵运算, 进行子矩阵提取并将复杂的矩阵运算简化为子矩阵间的同或运算, 提高了极性转换速度。在此基础上, 给出了MPDRM精确化简算法, 该算法采用格雷码策略使得极性转换发生在相邻极性值的MPDRM之间, 并以和项数作为主要化简标准, 文字数作为次要化简标准, 通过采用穷举策略搜索极性空间求解最小MPDRM。实验结果表明, 使用文字数作为次要化简标准能够获得更优化的MPDRM, 与基于列表技术的极性转换方法相比, 所提出方法能够缩短精确化简过程49. 5%的时间。
針對多輸齣佈爾函數繫統混閤極性對偶Reed-Muller展開(MPDRM)的極性轉換問題, 提齣瞭一種基于繫數矩陣的極性轉換方法。該方法通過分析使用轉換矩陣進行極性轉換時所需的矩陣運算, 進行子矩陣提取併將複雜的矩陣運算簡化為子矩陣間的同或運算, 提高瞭極性轉換速度。在此基礎上, 給齣瞭MPDRM精確化簡算法, 該算法採用格雷碼策略使得極性轉換髮生在相鄰極性值的MPDRM之間, 併以和項數作為主要化簡標準, 文字數作為次要化簡標準, 通過採用窮舉策略搜索極性空間求解最小MPDRM。實驗結果錶明, 使用文字數作為次要化簡標準能夠穫得更優化的MPDRM, 與基于列錶技術的極性轉換方法相比, 所提齣方法能夠縮短精確化簡過程49. 5%的時間。
침대다수출포이함수계통혼합겁성대우Reed-Muller전개(MPDRM)적겁성전환문제, 제출료일충기우계수구진적겁성전환방법。해방법통과분석사용전환구진진행겁성전환시소수적구진운산, 진행자구진제취병장복잡적구진운산간화위자구진간적동혹운산, 제고료겁성전환속도。재차기출상, 급출료MPDRM정학화간산법, 해산법채용격뢰마책략사득겁성전환발생재상린겁성치적MPDRM지간, 병이화항수작위주요화간표준, 문자수작위차요화간표준, 통과채용궁거책략수색겁성공간구해최소MPDRM。실험결과표명, 사용문자수작위차요화간표준능구획득경우화적MPDRM, 여기우렬표기술적겁성전환방법상비, 소제출방법능구축단정학화간과정49. 5%적시간。
This paper proposed a coefficient matrix based method for polarity conversion of MPDRM for multi-output Boolean function systems. The method improved the speed of polarity conversion through extracting sub-matrices from the coefficient matrix and simplifying the expensive matrix operations to XNOR operation between the extracted sub-matrices by analyzing the matrix operations needed for polarity conversion using transform matrix. On the basis of the proposed polarity conversion met-hod, this paper presented an exact minimization algorithm for MPDRM. This algorithm made the polarity conversion occur between MPDRMs with adjacent polarity numbers by using Gray code strategy, and obtained the minimized MPDRM by taking the number of sum terms in MPDRM as primary minimization criterion and the number of literals in MPDRM as secondary minimization criterion through polarity space exploration using exhaustive strategy. The experimental results show that, more optimal MPDRM can be obtained by using the number of literals in MPDRM as secondary minimization criterion. Compared with the tabular technique based polarity conversion method, the proposed coefficient matrix based polarity conversion method can reduce the time consumed by exact minimization process for MPDRM by 49. 5%.