湖南师范大学自然科学学报
湖南師範大學自然科學學報
호남사범대학자연과학학보
ACTA SCIENTIARUM NATURALIUM UNIVERSITATIS NORMALIS HUNANENSIS
2013年
6期
11-16
,共6页
余雷%满家巨%刘利刚
餘雷%滿傢巨%劉利剛
여뢰%만가거%류리강
去噪%联合字典学习%稀疏表达%边缘保持
去譟%聯閤字典學習%稀疏錶達%邊緣保持
거조%연합자전학습%희소표체%변연보지
denoise%joint-dictionary learning%sparse representation%edge-preserving
提出了一种新的基于联合字典学习的图像去噪方法。考虑图像复原问题总是涉及高、低质量两个版本的图像,从大量图像的两个版本中成对采样联合训练字典。所得字典不仅具有某类样本图像的结构特征,更具有一般图像这两个版本之间的对应关系,因此使得图像复原估计更有指向性,复原结果与原图像在细节上也更接近。
提齣瞭一種新的基于聯閤字典學習的圖像去譟方法。攷慮圖像複原問題總是涉及高、低質量兩箇版本的圖像,從大量圖像的兩箇版本中成對採樣聯閤訓練字典。所得字典不僅具有某類樣本圖像的結構特徵,更具有一般圖像這兩箇版本之間的對應關繫,因此使得圖像複原估計更有指嚮性,複原結果與原圖像在細節上也更接近。
제출료일충신적기우연합자전학습적도상거조방법。고필도상복원문제총시섭급고、저질량량개판본적도상,종대량도상적량개판본중성대채양연합훈련자전。소득자전불부구유모류양본도상적결구특정,경구유일반도상저량개판본지간적대응관계,인차사득도상복원고계경유지향성,복원결과여원도상재세절상야경접근。
A novel approach of denoising is presented based on joint-dictionary learning .It is considered that there are always two versions of images with high and low quality in image restoration problems .The samples are taken from a pair of these images once a time for joint-dictionary training .As a result , a dictionary containing not only the samples'structure features but also the relationship between images of these two versions is obtained .So when a degraded image is to be recovered , the joint-learned dictionary will work as an assistance to help to get a more precise estimation to the original image .