湖南师范大学自然科学学报
湖南師範大學自然科學學報
호남사범대학자연과학학보
ACTA SCIENTIARUM NATURALIUM UNIVERSITATIS NORMALIS HUNANENSIS
2013年
6期
1-6
,共6页
李物兰%白宝钢%李胜军%胡晓晓%韩艳敏
李物蘭%白寶鋼%李勝軍%鬍曉曉%韓豔敏
리물란%백보강%리성군%호효효%한염민
谱Galerkin方法%分数阶偏积分微分方程%弱奇异核%稳定性%误差估计
譜Galerkin方法%分數階偏積分微分方程%弱奇異覈%穩定性%誤差估計
보Galerkin방법%분수계편적분미분방정%약기이핵%은정성%오차고계
spectral-Galerkin methods%fractional order partial integro-differential equation%weak-ly singular kernel%stability%error estimate
研究了带弱奇异核分数阶偏积分微分方程的初边值问题。首先,在空间方向用谱Galerkin方法得到空间半离散格式,然后证明了该格式的稳定性和误差估计,收敛率体现了“谱精度”;在时间方向采用了中心差分,积分项采用了Lagrange内插法进行离散得到时空全离散格式。最后用数值实验检验了该方法的有效性,同时也确保了理论分析的准确性。
研究瞭帶弱奇異覈分數階偏積分微分方程的初邊值問題。首先,在空間方嚮用譜Galerkin方法得到空間半離散格式,然後證明瞭該格式的穩定性和誤差估計,收斂率體現瞭“譜精度”;在時間方嚮採用瞭中心差分,積分項採用瞭Lagrange內插法進行離散得到時空全離散格式。最後用數值實驗檢驗瞭該方法的有效性,同時也確保瞭理論分析的準確性。
연구료대약기이핵분수계편적분미분방정적초변치문제。수선,재공간방향용보Galerkin방법득도공간반리산격식,연후증명료해격식적은정성화오차고계,수렴솔체현료“보정도”;재시간방향채용료중심차분,적분항채용료Lagrange내삽법진행리산득도시공전리산격식。최후용수치실험검험료해방법적유효성,동시야학보료이론분석적준학성。
Spectral-Galerkin methods for the initial-boundary value problem of the fractional order partial integro-differential equations with a weakly singular kernel is considered .First, in space direc-tion, the semi-discrete scheme is derived by using spectral-Galerkin methods , the stability and error esti-mates of the scheme are proved , the convergence rate shows “spectral accuracy”.Then, in time direc-tion by the center differential , the integral term is treated by the Lagrange interpolation , the fully discrete scheme is achieved based on the semi-discrete scheme.Finally, a numerical experiment is presented to demonstrate the effectiveness of the method and confirm the theoretical results .