机床与液压
機床與液壓
궤상여액압
MACHINE TOOL & HYDRAULICS
2013年
24期
48-51
,共4页
经验模态分解%神经网络模%状态监测%均方根
經驗模態分解%神經網絡模%狀態鑑測%均方根
경험모태분해%신경망락모%상태감측%균방근
empirical mode decomposition%neural network%condition monitoring%root mean square
在机械加工过程,为了提高加工稳定性和精度,在线状态监测具有十分重要的作用。基于经验模态分解与神经网络模型,提出了一个在线状态监测方法。该方法将EMD分解的本征模态函数均方根作为机械加工特征量。为识别实时加工状态,以加工特征为神经网络的目标输入,建立起将IMF作为特征参数及把3种加工状态作为输出的3层后向神经网络模型。识别的结果显示,提出的方法能有效地识别加工状态。
在機械加工過程,為瞭提高加工穩定性和精度,在線狀態鑑測具有十分重要的作用。基于經驗模態分解與神經網絡模型,提齣瞭一箇在線狀態鑑測方法。該方法將EMD分解的本徵模態函數均方根作為機械加工特徵量。為識彆實時加工狀態,以加工特徵為神經網絡的目標輸入,建立起將IMF作為特徵參數及把3種加工狀態作為輸齣的3層後嚮神經網絡模型。識彆的結果顯示,提齣的方法能有效地識彆加工狀態。
재궤계가공과정,위료제고가공은정성화정도,재선상태감측구유십분중요적작용。기우경험모태분해여신경망락모형,제출료일개재선상태감측방법。해방법장EMD분해적본정모태함수균방근작위궤계가공특정량。위식별실시가공상태,이가공특정위신경망락적목표수입,건립기장IMF작위특정삼수급파3충가공상태작위수출적3층후향신경망락모형。식별적결과현시,제출적방법능유효지식별가공상태。
On-line condition monitoring in machining processes plays a significant role to improve the machining stability and precision.In this paper,an approach based on empirical mode de-composition (EMD)and neural network for on-line condition monitoring is proposed.The root mean square (RMS)of intrinsic mode functions (IMFs)by EMD is regarded as machining pro-cessing feature.The three layers Back-propagation (BP)neural network model taking the ma-chining feature as target input of neural network,the IMFs as characteristic parameter,and the 3 types of processing states as output are established to identify the processing state.The result shows that the proposed method can effectively identify the state of of process.