中国组织工程研究
中國組織工程研究
중국조직공정연구
Journal of Clinical Rehabilitative Tissue Engineering Research
2014年
16期
2594-2600
,共7页
生物相容性材料%纳米纤维%干细胞%组织工程%再生医学
生物相容性材料%納米纖維%榦細胞%組織工程%再生醫學
생물상용성재료%납미섬유%간세포%조직공정%재생의학
biocompatible materials%nanofibers%stem cels%tissue engineering%regenerative medicine
背景:三维纤维支架材料立足于模拟干细胞体内微环境的物理和化学特性,可以在极大程度上维持干细胞的活性,保证组织修复或干细胞治疗的疗效。目的:综述纳米纤维三维支架材料的制备方法及其与干细胞的相互作用,以及立足于这种材料的组织工程研究进展。方法:由作者在web of science以“tissue engineering, nanofiber scaffold, stem cel fate”为关键词,检索与干细胞组织工程和纳米纤维三维支架密切相关的研究。结果与结论:纳米纤维三维支架能够模拟干细胞微环境的物理结构,在其基础上进行表面改性可以进一步模拟微环境的化学信号,可为干细胞移植提供一个可靠的载体。纳米纤维三维支架材料的制备方法主要有分子自组装技术、溶液相分离和静电纺丝技术等。三维支架材料可以调控包括造血干细胞、胚胎干细胞、间充质干细胞和神经干细胞等干细胞的体外增殖。具有特定物理结构和生物化学表面的三维支架还可以在体外诱导干细胞向骨骼/软骨、神经或者肌肉等方向分化,还可以为干细胞移植提供适宜的微环境,保证干细胞治疗的效果。
揹景:三維纖維支架材料立足于模擬榦細胞體內微環境的物理和化學特性,可以在極大程度上維持榦細胞的活性,保證組織脩複或榦細胞治療的療效。目的:綜述納米纖維三維支架材料的製備方法及其與榦細胞的相互作用,以及立足于這種材料的組織工程研究進展。方法:由作者在web of science以“tissue engineering, nanofiber scaffold, stem cel fate”為關鍵詞,檢索與榦細胞組織工程和納米纖維三維支架密切相關的研究。結果與結論:納米纖維三維支架能夠模擬榦細胞微環境的物理結構,在其基礎上進行錶麵改性可以進一步模擬微環境的化學信號,可為榦細胞移植提供一箇可靠的載體。納米纖維三維支架材料的製備方法主要有分子自組裝技術、溶液相分離和靜電紡絲技術等。三維支架材料可以調控包括造血榦細胞、胚胎榦細胞、間充質榦細胞和神經榦細胞等榦細胞的體外增殖。具有特定物理結構和生物化學錶麵的三維支架還可以在體外誘導榦細胞嚮骨骼/軟骨、神經或者肌肉等方嚮分化,還可以為榦細胞移植提供適宜的微環境,保證榦細胞治療的效果。
배경:삼유섬유지가재료립족우모의간세포체내미배경적물리화화학특성,가이재겁대정도상유지간세포적활성,보증조직수복혹간세포치료적료효。목적:종술납미섬유삼유지가재료적제비방법급기여간세포적상호작용,이급립족우저충재료적조직공정연구진전。방법:유작자재web of science이“tissue engineering, nanofiber scaffold, stem cel fate”위관건사,검색여간세포조직공정화납미섬유삼유지가밀절상관적연구。결과여결론:납미섬유삼유지가능구모의간세포미배경적물리결구,재기기출상진행표면개성가이진일보모의미배경적화학신호,가위간세포이식제공일개가고적재체。납미섬유삼유지가재료적제비방법주요유분자자조장기술、용액상분리화정전방사기술등。삼유지가재료가이조공포괄조혈간세포、배태간세포、간충질간세포화신경간세포등간세포적체외증식。구유특정물리결구화생물화학표면적삼유지가환가이재체외유도간세포향골격/연골、신경혹자기육등방향분화,환가이위간세포이식제공괄의적미배경,보증간세포치료적효과。
BACKGROUND:Three-dimensional (3D) nanofiber scaffolds are aimed to mimic the physical and chemical signals of stem celsin vivo. 3D nanofiber scaffolds, which are capable to maintain the activity of stem cels, are promising in tissue regeneration and stem celltherapy. OBJECTIVE:To review the synthesis methods for 3D nanofiber scaffolds, and the interactions of stem cels and 3D scaffolds as wel as the current progress of 3D nanofiber scaffolds in tissue engineering. METHODS:Web of Science was searched with key words of “tissue engineering, nanofiber scaffold, stem cellfate” in English for articles relevant to stem celltissue engineering and 3D nanofiber scaffolds. RESULTS AND CONCLUSION:3D nanofiber scaffolds can mimic the physical architecture ofin vivo microenvironment due to its nano-scale topology. Chemical modification of scaffolds endows chemical cues to stem cels. Therefore, 3D nanofiber scaffold can be a promising delivery vehicle of stem cels in tissue engineering. Nanofiber scaffolds can be synthesized through self-assembly, sol-gel phase separation, and electric spinning. 3D nanofiber scaffolds have been shown to improve thein vitro proliferation of hematopoietic stem cels, embryonic stem cels, mesenchymal stem cels, and neural stem cels. 3D nanofiber scaffolds with specific topology/chemical properties can induce the differentiation of stem cels into bone, cartilage, nerve, or muscle. 3D nanofiber scaffold which provides a satisfactory microenvironment for stem cellenhance the performance of stem celltherapy.