高校地质学报
高校地質學報
고교지질학보
GEOLOGICAL JOURNAL OF CHINA UNIVERSITIES
2013年
3期
385-402
,共18页
花岗岩体高温热年代学%锆石U-Pb年龄%全岩Rb-Sr等时线年龄%花岗岩侵位-结晶固结时差%花岗岩冷却速率
花崗巖體高溫熱年代學%鋯石U-Pb年齡%全巖Rb-Sr等時線年齡%花崗巖侵位-結晶固結時差%花崗巖冷卻速率
화강암체고온열년대학%고석U-Pb년령%전암Rb-Sr등시선년령%화강암침위-결정고결시차%화강암냉각속솔
high temperature thermochronology of granite plutons%zircon U-Pb age%whole-rock Rb-Sr isochron age%time difference between granite emplacement and crystallization-solidification%cooling rate of granite plutons
对国内外花岗岩体723对锆石U-Pb年龄(tZr)和全岩Rb-Sr等时线年龄(tRb)进行的相关分析,拟合出相关系数很高(R=0.997),回归系数接近l的线性回归方程(tZr=1.0005×tRb+0.493041)。ΔtZr-Rb(tZr-tRb)频数统计分析表明:ΔtZr-Rb呈对称正态分布(偏度系数CSK=0.193;峰度系数CKU=6.722),其均值为0.624 Ma,众数值为1.0 Ma。这表明花岗岩体锆石U-Pb定年的测定结果与全岩Rb-Sr等时线定年测定结果在允许的误差范围内是一致的。不存在花岗岩体锆石U-Pb年龄必定大于全岩Rb-Sr等时线年龄的规律表明,同位素热年代学方法只适用于研究花岗岩结晶固结后的低温热演化史。前人根据锆石U-Pb年龄和全岩Rb-Sr等时线年龄差值及相应同位素体系封闭温度研究的10个花岗岩体的冷却速率(CRZr-Rb)表明,它们与岩体体积尺度不相关,这有悖于“热物体的体积(质量)愈大,则在相同热物理条件下其冷却速率愈小”的热物理学基本定律。根据热传导理论及本文作者(2010)提出的侵位结晶时差概念我们得出“在相同热物理学条件下,体积尺度是决定花岗岩体冷却速率最主要因素”的结论。以上述10个花岗岩体为例,本文计算得出它们在结晶固结前高温阶段的冷却速率(CRECTD)并拟合出冷却速率与岩体体积尺度呈幂函数关系:CRECTD=7544.7×D-2.1686,计算结果符合热物理学基本定律。
對國內外花崗巖體723對鋯石U-Pb年齡(tZr)和全巖Rb-Sr等時線年齡(tRb)進行的相關分析,擬閤齣相關繫數很高(R=0.997),迴歸繫數接近l的線性迴歸方程(tZr=1.0005×tRb+0.493041)。ΔtZr-Rb(tZr-tRb)頻數統計分析錶明:ΔtZr-Rb呈對稱正態分佈(偏度繫數CSK=0.193;峰度繫數CKU=6.722),其均值為0.624 Ma,衆數值為1.0 Ma。這錶明花崗巖體鋯石U-Pb定年的測定結果與全巖Rb-Sr等時線定年測定結果在允許的誤差範圍內是一緻的。不存在花崗巖體鋯石U-Pb年齡必定大于全巖Rb-Sr等時線年齡的規律錶明,同位素熱年代學方法隻適用于研究花崗巖結晶固結後的低溫熱縯化史。前人根據鋯石U-Pb年齡和全巖Rb-Sr等時線年齡差值及相應同位素體繫封閉溫度研究的10箇花崗巖體的冷卻速率(CRZr-Rb)錶明,它們與巖體體積呎度不相關,這有悖于“熱物體的體積(質量)愈大,則在相同熱物理條件下其冷卻速率愈小”的熱物理學基本定律。根據熱傳導理論及本文作者(2010)提齣的侵位結晶時差概唸我們得齣“在相同熱物理學條件下,體積呎度是決定花崗巖體冷卻速率最主要因素”的結論。以上述10箇花崗巖體為例,本文計算得齣它們在結晶固結前高溫階段的冷卻速率(CRECTD)併擬閤齣冷卻速率與巖體體積呎度呈冪函數關繫:CRECTD=7544.7×D-2.1686,計算結果符閤熱物理學基本定律。
대국내외화강암체723대고석U-Pb년령(tZr)화전암Rb-Sr등시선년령(tRb)진행적상관분석,의합출상관계수흔고(R=0.997),회귀계수접근l적선성회귀방정(tZr=1.0005×tRb+0.493041)。ΔtZr-Rb(tZr-tRb)빈수통계분석표명:ΔtZr-Rb정대칭정태분포(편도계수CSK=0.193;봉도계수CKU=6.722),기균치위0.624 Ma,음수치위1.0 Ma。저표명화강암체고석U-Pb정년적측정결과여전암Rb-Sr등시선정년측정결과재윤허적오차범위내시일치적。불존재화강암체고석U-Pb년령필정대우전암Rb-Sr등시선년령적규률표명,동위소열년대학방법지괄용우연구화강암결정고결후적저온열연화사。전인근거고석U-Pb년령화전암Rb-Sr등시선년령차치급상응동위소체계봉폐온도연구적10개화강암체적냉각속솔(CRZr-Rb)표명,타문여암체체적척도불상관,저유패우“열물체적체적(질량)유대,칙재상동열물리조건하기냉각속솔유소”적열물이학기본정률。근거열전도이론급본문작자(2010)제출적침위결정시차개념아문득출“재상동열물이학조건하,체적척도시결정화강암체냉각속솔최주요인소”적결론。이상술10개화강암체위례,본문계산득출타문재결정고결전고온계단적냉각속솔(CRECTD)병의합출냉각속솔여암체체적척도정멱함수관계:CRECTD=7544.7×D-2.1686,계산결과부합열물이학기본정률。
Using least squares regression procedure, a best regression equation (tZr=1.0005×tRb+0.493041) with high correlation coefficient (R=0.997) is fitted for 723 pairs of zircon U-Pb ages (tZr) and whole rock Rb-Sr ages (tRb) of granite plutons. The frequency analysis of 723 individual values of differences between tZr and tRb (ΔtZr-Rb) for granites shows symmetrical normal distribution (skewness CSK=0.193;kutrocess CKU=6.722) with the Mean of 0.624 Ma and the Mode of 1.0 Ma. These statistical characteristics indicate that for the granites as a whole, both the zircon U-Pb dating ages and the whole-rock Rb-Sr isochron ages are consistent within permissible errors. However, because of a time difference between emplacement age and crystallization-solidification age, this isotope thermochronological method can be applicable only for the stage after their crystallization-solidification. Based on the differences between zircon U-Pb ages and whole-rock Rb-Sr isochron ages and the closure temperatures of corresponding isotopic systems, previous researchers studied the cooling rates (CRZr-Rb) and thermal evolution history of 10 granite plutons, but these cooling rates are incorrelate to the volume change of granite plutons and contrary to the basic law of thermophysics, i.e., the cooling rate of a larger hot body should be slower compared with a smaller one. In this paper, based on the theory of thermal conductivity and using the concept of time difference between emplacement age and crystallization-consolidation age, developed by present authors (2010), we come to a conclusion that, at the same thermo-physical conditions, the volume scale is the most important parameter that controls cooling rate of the granite plutons. On the example of existing 10 granites, and for the high temperature thermal stage from magma emplacement to magma crystallization-consolidation, we derived a power function regression equation to describe the relationship of cooling rate with volume parameter D:CRECTD=7544.7×D-2.1686. The calculated results are obviously more reasonable and evidently conformable to the basic law of thermophysics..