计算机与应用化学
計算機與應用化學
계산궤여응용화학
COMPUTERS AND APPLIED CHEMISTRY
2013年
12期
1427-1430
,共4页
模糊C均值算法%多向主元分析%过程监测%间歇过程
模糊C均值算法%多嚮主元分析%過程鑑測%間歇過程
모호C균치산법%다향주원분석%과정감측%간헐과정
fuzzy c-means clustering algorithm%multi-way principle component analysis%process monitoring%batch process
对间歇过程进行实时监测具有重要的现实意义,传统的多向主元分析方法(MPCA)是用单一的统计模型来表现原始数据的信息,没有考虑到大多数间歇过程由于操作条件或反应进程的改变,不同操作阶段的数据动态特性会不同,同一操作阶段的变量也往往具有高度非线性的特性,因此会导致一些重要信息的缺失。本文针对青霉素发酵过程固有的多时段特性,提出了一种基于模糊C均值算法的分时段过程监控算法,该方法以每个时刻数据矩阵的相似度指标作为聚类输入,以便准确的判断过程特性变化,实现间歇生产过程的阶段划分,进而用MPCA建立多时段过程监控模型,最后再利用相应的统计指标进行过程监测。将该算法应用于青霉素发酵过程的在线监测,实验结果验证了该方法的有效性和可靠性。
對間歇過程進行實時鑑測具有重要的現實意義,傳統的多嚮主元分析方法(MPCA)是用單一的統計模型來錶現原始數據的信息,沒有攷慮到大多數間歇過程由于操作條件或反應進程的改變,不同操作階段的數據動態特性會不同,同一操作階段的變量也往往具有高度非線性的特性,因此會導緻一些重要信息的缺失。本文針對青黴素髮酵過程固有的多時段特性,提齣瞭一種基于模糊C均值算法的分時段過程鑑控算法,該方法以每箇時刻數據矩陣的相似度指標作為聚類輸入,以便準確的判斷過程特性變化,實現間歇生產過程的階段劃分,進而用MPCA建立多時段過程鑑控模型,最後再利用相應的統計指標進行過程鑑測。將該算法應用于青黴素髮酵過程的在線鑑測,實驗結果驗證瞭該方法的有效性和可靠性。
대간헐과정진행실시감측구유중요적현실의의,전통적다향주원분석방법(MPCA)시용단일적통계모형래표현원시수거적신식,몰유고필도대다수간헐과정유우조작조건혹반응진정적개변,불동조작계단적수거동태특성회불동,동일조작계단적변량야왕왕구유고도비선성적특성,인차회도치일사중요신식적결실。본문침대청매소발효과정고유적다시단특성,제출료일충기우모호C균치산법적분시단과정감공산법,해방법이매개시각수거구진적상사도지표작위취류수입,이편준학적판단과정특성변화,실현간헐생산과정적계단화분,진이용MPCA건립다시단과정감공모형,최후재이용상응적통계지표진행과정감측。장해산법응용우청매소발효과정적재선감측,실험결과험증료해방법적유효성화가고성。
The real-time monitoring for batch process has important practical significance. The traditional multi-way principal component analysis (MPCA) is to represent the original single data information using a single statistical model, without taking the characteristics into account as the changing of conditions or reaction process in a batch process. The characteristics include the difference of the dynamic characteristic data in the different operation stages and the high nonlinear of the variables in the same operation phase. Therefore, it will lead to some important information missing. Considering the inherent characteristics of multiple periods in the penicillin fermentation process, the sub-periods process monitoring method is put forward based on the fuzzy c-means algorithm (FCM), which takes the similarity index with each time data matrix as input, to determine changes in the process characteristics accurately. The batch process is divided into multiple period of time. And then to establish sub-periods process monitoring model using MPCA. Finally, we use the corresponding statistical indicators to achieve process monitoring. The proposed method is used to evaluate the industrial penicillin fermentation process data. The experimental results demonstrate the validity and reliability of the method.