计算机与应用化学
計算機與應用化學
계산궤여응용화학
COMPUTERS AND APPLIED CHEMISTRY
2013年
12期
1393-1396
,共4页
极限学习机%建模%复杂数据
極限學習機%建模%複雜數據
겁한학습궤%건모%복잡수거
extreme learning machine%modeling%complex datasets
大多统计模型的输出与输入都是高度非线性和线性相叠加的关系,为了更好地实现数据驱动的研究,本文提出了一种隐含层组合型的ELM (Extreme Learning Machine with Hybrid Hidden Layer, HHL-ELM)神经网络。该HHL-ELM神经网络在传统的ELM网络的隐含层中增加一个特殊的节点,该特殊节点的激活函数与隐含层其他节点激活函数不同,从而形成了一种隐含层组合的网络结构,试图增强ELM网络模型的输出。同时,本文利用UCI标准数据集中的Housing数据集进行了测试,并通过工业应用实例进行了验证。最后进行了模型对比,结果表明HHL-ELM网络在处理复杂数据时具有精度高的特点,为神经网络发展及其应用提供了新思路。
大多統計模型的輸齣與輸入都是高度非線性和線性相疊加的關繫,為瞭更好地實現數據驅動的研究,本文提齣瞭一種隱含層組閤型的ELM (Extreme Learning Machine with Hybrid Hidden Layer, HHL-ELM)神經網絡。該HHL-ELM神經網絡在傳統的ELM網絡的隱含層中增加一箇特殊的節點,該特殊節點的激活函數與隱含層其他節點激活函數不同,從而形成瞭一種隱含層組閤的網絡結構,試圖增彊ELM網絡模型的輸齣。同時,本文利用UCI標準數據集中的Housing數據集進行瞭測試,併通過工業應用實例進行瞭驗證。最後進行瞭模型對比,結果錶明HHL-ELM網絡在處理複雜數據時具有精度高的特點,為神經網絡髮展及其應用提供瞭新思路。
대다통계모형적수출여수입도시고도비선성화선성상첩가적관계,위료경호지실현수거구동적연구,본문제출료일충은함층조합형적ELM (Extreme Learning Machine with Hybrid Hidden Layer, HHL-ELM)신경망락。해HHL-ELM신경망락재전통적ELM망락적은함층중증가일개특수적절점,해특수절점적격활함수여은함층기타절점격활함수불동,종이형성료일충은함층조합적망락결구,시도증강ELM망락모형적수출。동시,본문이용UCI표준수거집중적Housing수거집진행료측시,병통과공업응용실례진행료험증。최후진행료모형대비,결과표명HHL-ELM망락재처리복잡수거시구유정도고적특점,위신경망락발전급기응용제공료신사로。
In most statistical models, the output and input have the relationship of highly nonlinear and linear superposition. In order to achieve better data-driven research, in this paper Extreme Learning Machine with Hybrid Hidden Layer (HHL-ELM) is proposed. Compared with the traditional ELM, some special neurons are added in the hidden layer of HHL-ELM. The activation functions in the special neurons are different from those in the other hidden neurons, which form a kind of network structure with hybrid hidden layer that can enhance the ability of the output of ELM. Meanwhile, the Housing data set from UCI standard data set is selected to exam the HHL-ELM model. Meantime, the HHL-ELM model is applied to model chemical processes. Compared with the ELM, the results show that HHL-ELM has a higher accuracy when dealing with complex data sets, which provide a new idea for the development of neural network.