航天器环境工程
航天器環境工程
항천기배경공정
SPACECRAFT ENVIRONMENT ENGINEERING
2013年
6期
576-580
,共5页
刘治东%贾东永%庞宝君%刘刚%刘源
劉治東%賈東永%龐寶君%劉剛%劉源
류치동%가동영%방보군%류강%류원
空间站%空间碎片%密封舱穿孔%损伤模式识别%PVDF压电薄膜
空間站%空間碎片%密封艙穿孔%損傷模式識彆%PVDF壓電薄膜
공간참%공간쇄편%밀봉창천공%손상모식식별%PVDF압전박막
space station%space debris%perforation of sealed cabin%damage pattern recognition%PVDF piezoelectric film
日益恶化的空间碎片环境将严重威胁空间站及航天员的在轨安全。文章基于聚偏二氟乙烯(polyvinylidene fluoride,PVDF)压电薄膜设计了一种密封舱壁穿孔损伤识别技术方案,用于识别空间碎片超高速撞击对航天器密封舱壁造成的损伤模式,可为航天员合理选择应急措施提供依据。首先,发射超高速弹丸穿透铝合金靶板以模拟密封舱壁被击穿损伤的情况,形成的碎片云撞击PVDF压电薄膜探头,利用信号采集设备获取高速撞击引起的去极化效应信号,识别该信号的频率特征;其次,对PVDF压电薄膜探头及其支撑结构进行敲击试验,模拟在轨运行时因碰撞产生的干扰信号,掌握此类干扰信号的频率特征。试验结果表明,当系统采样频率为20 MHz时:1)所获得的探头去极化效应信号具有极为陡峭的上升沿,且上升沿的时长为亚μs量级;2)去极化效应信号主要由1 MHz以下的信号组成,但也包含少量的3~10 MHz高频成分;3)敲击探头及其支撑结构所产生的干扰信号频率在20 kHz以下。可根据频率差异进行两种信号的识别。
日益噁化的空間碎片環境將嚴重威脅空間站及航天員的在軌安全。文章基于聚偏二氟乙烯(polyvinylidene fluoride,PVDF)壓電薄膜設計瞭一種密封艙壁穿孔損傷識彆技術方案,用于識彆空間碎片超高速撞擊對航天器密封艙壁造成的損傷模式,可為航天員閤理選擇應急措施提供依據。首先,髮射超高速彈汍穿透鋁閤金靶闆以模擬密封艙壁被擊穿損傷的情況,形成的碎片雲撞擊PVDF壓電薄膜探頭,利用信號採集設備穫取高速撞擊引起的去極化效應信號,識彆該信號的頻率特徵;其次,對PVDF壓電薄膜探頭及其支撐結構進行敲擊試驗,模擬在軌運行時因踫撞產生的榦擾信號,掌握此類榦擾信號的頻率特徵。試驗結果錶明,噹繫統採樣頻率為20 MHz時:1)所穫得的探頭去極化效應信號具有極為陡峭的上升沿,且上升沿的時長為亞μs量級;2)去極化效應信號主要由1 MHz以下的信號組成,但也包含少量的3~10 MHz高頻成分;3)敲擊探頭及其支撐結構所產生的榦擾信號頻率在20 kHz以下。可根據頻率差異進行兩種信號的識彆。
일익악화적공간쇄편배경장엄중위협공간참급항천원적재궤안전。문장기우취편이불을희(polyvinylidene fluoride,PVDF)압전박막설계료일충밀봉창벽천공손상식별기술방안,용우식별공간쇄편초고속당격대항천기밀봉창벽조성적손상모식,가위항천원합리선택응급조시제공의거。수선,발사초고속탄환천투려합금파판이모의밀봉창벽피격천손상적정황,형성적쇄편운당격PVDF압전박막탐두,이용신호채집설비획취고속당격인기적거겁화효응신호,식별해신호적빈솔특정;기차,대PVDF압전박막탐두급기지탱결구진행고격시험,모의재궤운행시인팽당산생적간우신호,장악차류간우신호적빈솔특정。시험결과표명,당계통채양빈솔위20 MHz시:1)소획득적탐두거겁화효응신호구유겁위두초적상승연,차상승연적시장위아μs량급;2)거겁화효응신호주요유1 MHz이하적신호조성,단야포함소량적3~10 MHz고빈성분;3)고격탐두급기지탱결구소산생적간우신호빈솔재20 kHz이하。가근거빈솔차이진행량충신호적식별。
The deteriorating space debris environment continuously threatens the on-orbit spacecraft. In this paper, a perforation damage pattern recognition method is designed by using the polarized polyvinylidene fluoride (PVDF) piezoelectric film, for recognizing the damage pattern of the sealed cabin caused by the hypervelocity space debris impact, and it provides a warning for astronauts to take reasonable emergency measures. Firstly, the hypervelocity aluminum bullet is launched to penetrate the aluminum target to simulate the perforation of the sealed cabin, and the debris cloud produced after perforation punctures the PVDF detector, and the measurement equipment acquires the depolarization signal and its characteristics of the detector. Secondly, the knocking test on the detector and its support structure is made to simulate the on-orbit interference signals, and the signal feature is identified. A perforation damage pattern recognition scheme with anti-interference is designed for the sealed cabin. The experiment shows that: 1) the PVDF depolarization signal has a steep rising edge (shorter than microsecond level) when the sampling rate is sufficient; 2) the frequency of the depolarization signals is mostly lower than 1 MHz, and a few of them have frequencies in the range of 3~10 MHz. The interference signal frequency is usually lower than 20 kHz. The signal could be distinguished by the frequency difference.