航空计算技术
航空計算技術
항공계산기술
AERONAUTICAL COMPUTER TECHNIQUE
2014年
2期
41-45
,共5页
马凯超%黄其青%殷之平%刘飞
馬凱超%黃其青%慇之平%劉飛
마개초%황기청%은지평%류비
飞行科目%模板样本集%聚类分析%载荷预测%神经网络%卡尔曼滤波
飛行科目%模闆樣本集%聚類分析%載荷預測%神經網絡%卡爾曼濾波
비행과목%모판양본집%취류분석%재하예측%신경망락%잡이만려파
flight course%sample template%data clustering%load prediction%neural networks%Kalman filter
为建立某一飞行科目的模板样本集,提出一套基于神经网络和卡尔曼滤波的数据处理方法。任选一次试飞样本,建立Kohonen自组织神经网络进行参数降维、聚类分析、特征提取等,使样本量缩减90%以上,得到该科目的模板样本集。用处理后的样本训练BP神经网络,对其他未经处理的试飞样本进行载荷预测,误差均在3%之内,说明处理后的样本能代表该科目的数据特点,即为模板样本集。方法可以为飞机载荷监控数据库的完善工作服务。
為建立某一飛行科目的模闆樣本集,提齣一套基于神經網絡和卡爾曼濾波的數據處理方法。任選一次試飛樣本,建立Kohonen自組織神經網絡進行參數降維、聚類分析、特徵提取等,使樣本量縮減90%以上,得到該科目的模闆樣本集。用處理後的樣本訓練BP神經網絡,對其他未經處理的試飛樣本進行載荷預測,誤差均在3%之內,說明處理後的樣本能代錶該科目的數據特點,即為模闆樣本集。方法可以為飛機載荷鑑控數據庫的完善工作服務。
위건립모일비행과목적모판양본집,제출일투기우신경망락화잡이만려파적수거처리방법。임선일차시비양본,건립Kohonen자조직신경망락진행삼수강유、취류분석、특정제취등,사양본량축감90%이상,득도해과목적모판양본집。용처리후적양본훈련BP신경망락,대기타미경처리적시비양본진행재하예측,오차균재3%지내,설명처리후적양본능대표해과목적수거특점,즉위모판양본집。방법가이위비궤재하감공수거고적완선공작복무。
In order to establish the sample template of a flight course ,a data processing methodology based on Neural Networks and Kalman Filter is provided .For the sample set of an arbitrarily selected flight test in a course ,the Kohonen Self-organized Feature Maps are established to achieve parametric dimension reduction ,data clustering and feature extraction , resulting in over 90% of the original samples canceled and yielding the sample template of this flight course .The accuracy check begins by the establishment of BP Neural Networks trained by the processed sample set ,where the loads of other unprocessed sample sets in the same course are predicted .The prediction error can be within 3%, indicating that the processed sample template well represents the feature of this course and is therefore proved to be the sample tem-plate.The methodology presented above can assist help to the perfection of the database of aircraft struc -tural loads monitoring .