计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2013年
12期
237-241
,共5页
图像配准%加速鲁棒特征%特征提取%特征匹配%变换模型%层次估计%模型选择
圖像配準%加速魯棒特徵%特徵提取%特徵匹配%變換模型%層次估計%模型選擇
도상배준%가속로봉특정%특정제취%특정필배%변환모형%층차고계%모형선택
image registration%Speeded-up Robust Feature(SURF)%feature extraction%feature match%transformation model%hierachical estimation%model selection
为保证眼底图像配准精度,同时降低时间损耗,提出一种改进的基于加速鲁棒特征的眼底图像配准方法。该方法在提取眼底图像加速鲁棒特征的基础上,利用BBF算法和特征的方向特性和空间一致性检测得到初始匹配特征序列,并给出层次估计与模型选择技术相结合的方法,以求解图像之间的变换参数。通过进一步配准修正获得更好的变换参数。实验结果表明,该方法获得的配准精度均方根误差值均小于1,并能够在满足精度要求的同时提高效率。
為保證眼底圖像配準精度,同時降低時間損耗,提齣一種改進的基于加速魯棒特徵的眼底圖像配準方法。該方法在提取眼底圖像加速魯棒特徵的基礎上,利用BBF算法和特徵的方嚮特性和空間一緻性檢測得到初始匹配特徵序列,併給齣層次估計與模型選擇技術相結閤的方法,以求解圖像之間的變換參數。通過進一步配準脩正穫得更好的變換參數。實驗結果錶明,該方法穫得的配準精度均方根誤差值均小于1,併能夠在滿足精度要求的同時提高效率。
위보증안저도상배준정도,동시강저시간손모,제출일충개진적기우가속로봉특정적안저도상배준방법。해방법재제취안저도상가속로봉특정적기출상,이용BBF산법화특정적방향특성화공간일치성검측득도초시필배특정서렬,병급출층차고계여모형선택기술상결합적방법,이구해도상지간적변환삼수。통과진일보배준수정획득경호적변환삼수。실험결과표명,해방법획득적배준정도균방근오차치균소우1,병능구재만족정도요구적동시제고효솔。
The improved method based on Speeded-up Robust Feature(SURF) is proposed to ensure the accuracy and reduce time loss of the fundus image registration. The method is based on SURF feature extraction. The BBF algorithm is used to match feature point, and the keypoints’ orientations and the geometrical size of matches are used to exclude the incorrect matches. The hierachical estimator and model selection are combined to calculate the transformation parameter. And the registration correction is done to yield better transformation parameter. Experimental results show that the mean square error value of registration accuracy is less than 1, and can meet the accuracy requirements and improve the processing speed.