光电工程
光電工程
광전공정
OPTO-ELECTRONIC ENGINEERING
2013年
12期
80-88
,共9页
罗韩君%詹杰%丰元%张禹涛
囉韓君%詹傑%豐元%張禹濤
라한군%첨걸%봉원%장우도
激光雷达方程%盖革模式%阵列%最大探测距离
激光雷達方程%蓋革模式%陣列%最大探測距離
격광뢰체방정%개혁모식%진렬%최대탐측거리
laser radar equation%Geiger mode%array%maximum detection range
最大探测距离是表征光子雷达性能的重要参数,本文利用盖革模式雪崩光电二极管阵列对直接探测脉冲光子雷达的最大探测距离进行了研究。从激光雷达方程出发,根据盖革模式雪崩光电二极管阵列探测像元中回波激发初始电子数的泊松统计模型和系统最小可接受探测概率条件,建立了光子雷达的最大探测距离理论模型。利用光子雷达系统设计参数,研究了对最大探测距离产生影响的五个主要因素。研究结果表明发射激光脉冲能量越高,噪声越小,回波位置在距离门中越靠前,大气传输系数越大,目标反射率越高,获得的最大探测距离越大;使用脉宽为5 ns,脉冲能量为50μJ的激光脉冲,最小可接受探测概率为0.9时,可获得大于1 km的最大探测距离;同时,选择合适的系统最小可接受探测概率对系统探测性能的改善十分重要。
最大探測距離是錶徵光子雷達性能的重要參數,本文利用蓋革模式雪崩光電二極管陣列對直接探測脈遲光子雷達的最大探測距離進行瞭研究。從激光雷達方程齣髮,根據蓋革模式雪崩光電二極管陣列探測像元中迴波激髮初始電子數的泊鬆統計模型和繫統最小可接受探測概率條件,建立瞭光子雷達的最大探測距離理論模型。利用光子雷達繫統設計參數,研究瞭對最大探測距離產生影響的五箇主要因素。研究結果錶明髮射激光脈遲能量越高,譟聲越小,迴波位置在距離門中越靠前,大氣傳輸繫數越大,目標反射率越高,穫得的最大探測距離越大;使用脈寬為5 ns,脈遲能量為50μJ的激光脈遲,最小可接受探測概率為0.9時,可穫得大于1 km的最大探測距離;同時,選擇閤適的繫統最小可接受探測概率對繫統探測性能的改善十分重要。
최대탐측거리시표정광자뢰체성능적중요삼수,본문이용개혁모식설붕광전이겁관진렬대직접탐측맥충광자뢰체적최대탐측거리진행료연구。종격광뢰체방정출발,근거개혁모식설붕광전이겁관진렬탐측상원중회파격발초시전자수적박송통계모형화계통최소가접수탐측개솔조건,건립료광자뢰체적최대탐측거리이론모형。이용광자뢰체계통설계삼수,연구료대최대탐측거리산생영향적오개주요인소。연구결과표명발사격광맥충능량월고,조성월소,회파위치재거리문중월고전,대기전수계수월대,목표반사솔월고,획득적최대탐측거리월대;사용맥관위5 ns,맥충능량위50μJ적격광맥충,최소가접수탐측개솔위0.9시,가획득대우1 km적최대탐측거리;동시,선택합괄적계통최소가접수탐측개솔대계통탐측성능적개선십분중요。
Maximum detection range is an important parameter for evaluating the performance of photon ladar. In this paper, the maximum detection range of direct-detection pulse photon ladar which uses Geiger-mode Avalanche Photodiode (GM-APD) array as the detector is investigated. Based on the laser radar equation and the model of the minimum acceptable detection probability, and assuming the primary electrons triggered by the echo photons in the GM-APD pixel obey Poisson distribution, the theoretical model estimating the maximum detection range is proposed. By using the system design parameters, the influence of five main factors on the maximum detection range is investigated. The results show that the stronger emitted pulse energy, lower noise level, front echo position in the range gate, large atmospheric transmission, and high target reflectivity can result in larger maximum detection range. When the minimum acceptable detection probability is selected to 0.9, by using emitted laser pulse with pulse width 5 ns and energy 50μJ, the system maximum detection range more than 1 km can be achieved. At the same time, it is important to select the minimum acceptable detection probability for producing a high system detection performance.