信阳师范学院学报(自然科学版)
信暘師範學院學報(自然科學版)
신양사범학원학보(자연과학판)
JOURNAL OF XINYANG NORMAL UNIVERSITY(NATURAL SCIENCE EDITION)
2013年
4期
587-591
,共5页
小波分析%自适应阈值%贝叶斯框架%广义高斯分布%图像去噪
小波分析%自適應閾值%貝葉斯框架%廣義高斯分佈%圖像去譟
소파분석%자괄응역치%패협사광가%엄의고사분포%도상거조
wavelet transform%adaptive threshold%Bayesian framework%GGD%image denoising
根据图像各子带系数的相关性,提出一种局部自适应的图像小波系数的统计算法,并应用于遥感图像的去噪研究。首先将图像的小波分解系数视为服从广义高斯分布( GGD )的随机变量模型,然后在小波软阈值去噪的基础上,根据图像小波系数在空间上具有聚集性的特点,提出了一种新的局部自适应的算法,结合最大后验概率( MAP)参数估计,用于恢复带噪图像。该算法用于岷江上游植被和土壤类型典型地区-毛儿盖实验区遥感图像的去噪,效果理想,同其他的图像去噪算法相比,它具有较高的峰值信噪比( PSNR)和更好的视觉效果。
根據圖像各子帶繫數的相關性,提齣一種跼部自適應的圖像小波繫數的統計算法,併應用于遙感圖像的去譟研究。首先將圖像的小波分解繫數視為服從廣義高斯分佈( GGD )的隨機變量模型,然後在小波軟閾值去譟的基礎上,根據圖像小波繫數在空間上具有聚集性的特點,提齣瞭一種新的跼部自適應的算法,結閤最大後驗概率( MAP)參數估計,用于恢複帶譟圖像。該算法用于岷江上遊植被和土壤類型典型地區-毛兒蓋實驗區遙感圖像的去譟,效果理想,同其他的圖像去譟算法相比,它具有較高的峰值信譟比( PSNR)和更好的視覺效果。
근거도상각자대계수적상관성,제출일충국부자괄응적도상소파계수적통계산법,병응용우요감도상적거조연구。수선장도상적소파분해계수시위복종엄의고사분포( GGD )적수궤변량모형,연후재소파연역치거조적기출상,근거도상소파계수재공간상구유취집성적특점,제출료일충신적국부자괄응적산법,결합최대후험개솔( MAP)삼수고계,용우회복대조도상。해산법용우민강상유식피화토양류형전형지구-모인개실험구요감도상적거조,효과이상,동기타적도상거조산법상비,타구유교고적봉치신조비( PSNR)화경호적시각효과。
Based on exploiting the correlations among the image wavelet decomposition coefficients in a sub -band, an adaptive statistical model for wavelet image coefficients was presented and applied to the image denoising of Remote Sensing Image .Each wavelet coefficient was firstly modeled as a random variable of a generalized Gaussian distribution ( GGD) ,then,based on the algorithm of the wavelet soft threshold denoising and according to the characteristics of spa -tial clustering of wavelet decomposition coefficients , a new local adaptive algorithm was proposed and applied to restore the noisy images by estimating the coefficients with maximum a posteriori probability rule ( MAP) .The algorithm was applied to denoise the noisy Remote Sensing Image of Maoergai area in the upper Minjiang where contains typical vege -tation and soil .Simulation results showed that the higher peak-signal to noise ratio and the better visual effects were ob-tained as compared to other image denoising methods .