浙江万里学院学报
浙江萬裏學院學報
절강만리학원학보
JOURNAL OF ZHEJIANG WANLI UNIVERSITY
2014年
2期
93-98
,共6页
二维主成分分析%分块二维主成分分析法%特征提取%人脸识别
二維主成分分析%分塊二維主成分分析法%特徵提取%人臉識彆
이유주성분분석%분괴이유주성분분석법%특정제취%인검식별
two-Dimensional Principal Component Analysis (2DPCA)%M-2DPCA%feature extraction%face recognition
文章将分块理论与2DPCA方法相结合,研究分块二维主成分分析法(M-2DPCA)在人脸识别中的应用。对人脸图像矩阵进行分块,用形成的子图像矩阵直接构造总体散布矩阵并求解对应的特征向量,利用提取的特征向量对图像进行特征的提取与分析,进行人脸识别。基于Yale人脸数据库的实验显示,在相同训练样本和特征向量条件下,M-2DPCA比2DPCA算法具有更高的识别率。结论 M-2DPCA充分利用了图像的协方差信息,在人脸识别方面具有较高的识别率和鲁棒性方面,对进一步研究人脸识别具有重要的意义。
文章將分塊理論與2DPCA方法相結閤,研究分塊二維主成分分析法(M-2DPCA)在人臉識彆中的應用。對人臉圖像矩陣進行分塊,用形成的子圖像矩陣直接構造總體散佈矩陣併求解對應的特徵嚮量,利用提取的特徵嚮量對圖像進行特徵的提取與分析,進行人臉識彆。基于Yale人臉數據庫的實驗顯示,在相同訓練樣本和特徵嚮量條件下,M-2DPCA比2DPCA算法具有更高的識彆率。結論 M-2DPCA充分利用瞭圖像的協方差信息,在人臉識彆方麵具有較高的識彆率和魯棒性方麵,對進一步研究人臉識彆具有重要的意義。
문장장분괴이론여2DPCA방법상결합,연구분괴이유주성분분석법(M-2DPCA)재인검식별중적응용。대인검도상구진진행분괴,용형성적자도상구진직접구조총체산포구진병구해대응적특정향량,이용제취적특정향량대도상진행특정적제취여분석,진행인검식별。기우Yale인검수거고적실험현시,재상동훈련양본화특정향량조건하,M-2DPCA비2DPCA산법구유경고적식별솔。결론 M-2DPCA충분이용료도상적협방차신식,재인검식별방면구유교고적식별솔화로봉성방면,대진일보연구인검식별구유중요적의의。
Aim: The block theory and two-dimensional principal component analysis (2DPCA) were combined, and the modular two-dimensional principal component analysis (M-2DPCA) was studied in face recognition. Methods: The original image matrix was divided into modular image matrixes , and the image covariance matrix was formed directly by using sub-image matrixes , and its eigenvectors were derived. The eigenvectors were used to extract and analyze image feature for face recognition. Results:The Experiments based on the Yale face database showed that it had a higher recognition rate of M-2DPCA than 2DPCA, under the same training specimens and eigenvectors. Conclusion: The information of image covariance matrix was fully utilized in M-2DPCA method , which had an admirable recognition rate and robustness on face recognition, and it was important to further research on face recognition.