计算机技术与发展
計算機技術與髮展
계산궤기술여발전
COMPUTER TECHNOLOGY AND DEVELOPMENT
2014年
4期
72-76
,共5页
图像配准%墨西哥帽小波%归一化伪Zernike矩%双向匹配%迭代加权最小二乘法
圖像配準%墨西哥帽小波%歸一化偽Zernike矩%雙嚮匹配%迭代加權最小二乘法
도상배준%묵서가모소파%귀일화위Zernike구%쌍향필배%질대가권최소이승법
image registration%Mexican-hat wavelets%normalized Pseudo-Zernike moments%bidirectional match%iterative weighted least square method
图像配准是现代图像处理技术中的一项关键技术,在许多实际的应用领域都占有举足轻重的地位。文中介绍了一种结合尺度相互作用模型下墨西哥帽小波和归一化伪Zernike矩的图像配准方法。首先利用尺度相互作用模型下加入尺度因子的墨西哥帽小波分别提取参考图像和实时图像中的特征点,然后利用归一化伪Zernike矩不变量的方法和双向匹配策略对参考图像和实时图像的特征点进行匹配,用迭代加权最小二乘法估算出最佳仿射变换参数,最后用所得变换参数对实时图像进行变换和重采样来实现图像配准。实验结果表明:该算法能够精确提取和匹配特征点,有效地消除误匹配点对,被测加噪实物图像的特征点均方根误差为0.41,达到了像素级配准精度。
圖像配準是現代圖像處理技術中的一項關鍵技術,在許多實際的應用領域都佔有舉足輕重的地位。文中介紹瞭一種結閤呎度相互作用模型下墨西哥帽小波和歸一化偽Zernike矩的圖像配準方法。首先利用呎度相互作用模型下加入呎度因子的墨西哥帽小波分彆提取參攷圖像和實時圖像中的特徵點,然後利用歸一化偽Zernike矩不變量的方法和雙嚮匹配策略對參攷圖像和實時圖像的特徵點進行匹配,用迭代加權最小二乘法估算齣最佳倣射變換參數,最後用所得變換參數對實時圖像進行變換和重採樣來實現圖像配準。實驗結果錶明:該算法能夠精確提取和匹配特徵點,有效地消除誤匹配點對,被測加譟實物圖像的特徵點均方根誤差為0.41,達到瞭像素級配準精度。
도상배준시현대도상처리기술중적일항관건기술,재허다실제적응용영역도점유거족경중적지위。문중개소료일충결합척도상호작용모형하묵서가모소파화귀일화위Zernike구적도상배준방법。수선이용척도상호작용모형하가입척도인자적묵서가모소파분별제취삼고도상화실시도상중적특정점,연후이용귀일화위Zernike구불변량적방법화쌍향필배책략대삼고도상화실시도상적특정점진행필배,용질대가권최소이승법고산출최가방사변환삼수,최후용소득변환삼수대실시도상진행변환화중채양래실현도상배준。실험결과표명:해산법능구정학제취화필배특정점,유효지소제오필배점대,피측가조실물도상적특정점균방근오차위0.41,체도료상소급배준정도。
Image registration is a key technique in modern image processing,and it is very important in many real applications. A method for image registration combining scale-interaction of Mexican-hat wavelets and normalized Pseudo-Zernike moments is proposed. First, feature points are extracted using scale-interaction of Mexican-hat wavelets in the reference image and sensed image respectively. Then, normalized Pseudo-Zernike moments and a bidirectional matching strategy are used to match them,and iterative weighted least square method is used to estimate the best affine transform parameters. At last,the sensed image is transformed and resampled to accomplish the image registration. The experiment indicates that the proposed algorithm extracts feature points and matches them exactly and eliminates wrong matched points effectively. The RMSE of the feature points of images of practicality with Gaussian noise is 0. 41 and it achieves pixel precision registration result.